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“A close-up photo of a man and a woman sitting on a bench”

(a) Our Method: Detailed Control
of Localization and Expressivity
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(c) Prompt-to-Prompt [17]: No Continuous Control
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×
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Fig. 1: (a) Our method augments the prompt input of image generation models with
fine-grained control of attribute expression in generated images (unmodified images
are marked in orange) in a subject-specific manner without additional cost during
generation. (b, c) Previous methods only allow either fine-grained expression control or
fine-grained localization when starting from the image generated from a basic prompt.

Abstract. In recent years, advances in text-to-image (T2I) diffusion
models have substantially elevated the quality of their generated images.
However, achieving fine-grained control over attributes remains a chal-
lenge due to the limitations of natural language prompts (such as no
continuous set of intermediate descriptions existing between “person” and
“old person”). Even though many methods were introduced that augment
the model or generation process to enable such control, methods that do
not require a fixed reference image are limited to either enabling global
fine-grained attribute expression control or coarse attribute expression
control localized to specific subjects, not both simultaneously. We show
that there exist directions in the commonly used token-level CLIP text
embeddings that enable fine-grained subject-specific control of high-level
attributes in text-to-image models. Based on this observation, we intro-
duce one efficient optimization-free and one robust optimization-based
method to identify these directions for specific attributes from contrastive
text prompts. We demonstrate that these directions can be used to aug-
ment the prompt text input with fine-grained control over attributes
of specific subjects in a compositional manner (control over multiple
attributes of a single subject) without having to adapt the diffusion
model.
Project page: compvis.github.io/attribute-control.
Code is available at github.com/CompVis/attribute-control.
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1 Introduction

Text-to-image (T2I) models have recently seen considerable progress in their capa-
bilities and the quality of their generated images. However, a persistent challenge
lies in achieving fine-grained control over the generated images, particularly con-
cerning attribute expression. This can be attributed to the limitations of natural
language, which does not allow for the very fine-grained description of attribute
expression in a way that diffusion models reliably understand. Unlike image edit-
ing use cases, where a base image is given, and masks can be provided to adapt a
global method to only affect a target subject, we target the pure generation use
case, where no reference image is given. This means that subject instances can
only be identified via the prompt. Even though many methods (see Tab. 1) were
introduced that augment the model or generation process to enable such control
without per-image optimization (in contrast to Imagic [22]), they are limited to
either enabling global fine-grained attribute control [14,23,25,27,28] or coarse
attribute control localized to specific subjects [17,49], not both simultaneously.

Starting from a simple prompt for a T2I diffusion model, our goal is to
influence the generation process in a fine-grained manner, in both localization
and magnitude. More specifically, in a prompt such as “a photo of a woman
standing next to a man in front of their car”, we want to influence attributes
of each subject – “woman”, “man”, and “car” – separately and with fine-grained
control over their individual attribute expression. Typically, one would add
these attributes to the subjects in the prompt (“old person”), but this approach
yields only very coarse control of these attributes. Additionally, when composing
multiple of such attributes in the prompt, diffusion models often ignore a subset
of them [12,28].

We show that there exist directions in the commonly used token-level CLIP [39]
text embeddings that enable fine-grained subject-specific control of high-level
attributes in T2I models, as opposed to inversion methods that learn instance
information [13,32]. Based on this observation, we introduce methods to identify
these directions for specific attributes and show how they can be used to augment
the prompt text input with fine-grained continuous control over attributes of
specific subjects in a compositional (stackable) manner without adapting the
diffusion model or incurring additional costs during generation.

We summarize our main contributions as follows:

– We show that token-level edit directions that allow fine-grained control of
subject-specific attributes exist in common CLIP text embeddings and that
diffusion models are capable of interpreting them

– We show that T2I diffusion models are capable of backpropagating high-level
semantic concepts to their text embedding input as adaptations of existing
embeddings using just the reconstruction loss objective on a single image

– We introduce two approaches for identifying those directions for specific at-
tributes or concepts from contrasting text prompts describing these concepts,
one simple optimization-free method and one optimization-based one that
identifies more robust directions
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– We show that these token-level edit directions enable fine-grained, subject-
specific, compositional control of attributes and concepts in common diffusion
models

2 Related Work

This section provides an overview of work related to our method. We also compare
our method with others in Tab. 1.

Influencing the Generation Process of Diffusion Models Since Diffusion
Models do not provide the same ordered and interpretable latent space as
Generative Adversarial Networks [8,15,40] do, a considerable research interest has
formed to provide Diffusion Models with greater ability to control visual detail. A
common approach for this is to directly use new or adapt existing neural features
to guide the generation process towards semantic changes [5, 14,17, 22,49]. This
allows for fine-grained and even non-text-based instructions to appropriately affect
the sample, like interpolating between specific concepts [5, 14, 17, 22], subject-
specific control [49] or entirely erasing concepts [26]. Our work encompasses
the interpolating abilities as well as subject-specific control in complex samples,
therefore combining two fundamental properties that have been mutually exclusive
for generic methods so far.

Image Editing. One special case of influencing the generation process of diffusion
models is the case where a reference image is given. Here, the expectation
typically is that only a few aspects of the image should be altered. Numerous
prior works [4,6,17,31,51] have shown difficulties properly disentangling multiple
concepts in a sample to prevent global changes and enable a user to locally
concentrate edits. To approach this problem, one can directly integrate specific
changes into the image using the reverse diffusion process [31], by inversion [32,35]
or by marking regions using edit masks [30,44] to enforce localization.

Instance Personalization Another related task is personalizing diffusion models
to enable them to generate images that contain specific instances of subjects.
Approaches based on finetuning include DreamBooth [43], which leverages a prior
preservation loss to adapt the visual backbone, while approaches like Textual
Inversion [13] restrict the adaptation of the model to an added embedding vector
to be optimized to represent a specific instance or concept. Furthermore Kumari
et al. [24] propose CustomDiffusion for efficient training of multiple concepts
by finetuning only cross-attention layers. Moreover, gaining enhanced control
in scenarios where samples exhibit complex compositional structures remains
a significant challenge for text-to-image models [47]. A prominent strategy to
achieve controllable image synthesis involves the use of energy-based models, as
suggested by several previous works [27,28,33].
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Global Edit Directions in CLIP Space A wide range of previous works
[1–3, 36] investigated the use of the CLIP embedding space [39] to guide the
image generation process of StyleGAN [21]. These studies identify directions
within CLIP’s embedding space that correspond to global semantic changes and
utilize these directions to steer the generation process.

Table 1: High-level comparison of our method with other methods that allow attribute
control in T2I diffusion models.

Method

Continuous
Fine-grained

Attribute
Control

Subject-
Specific

Additional Computational
Cost during Generation

Trained
Components

Captures
Correlations

Editing Methods (require reference image)
DiffusionCLIP [23] ✓ ✗ 0 Full Model Finetune ✓

Null-text Inversion [32] + Prompt-to-Prompt [17] ≈ ✗1 ✓ Null-text Inversion & 2× Sampling Unconditional Embeddings ✓

Imagic [22] ✓ ✓ etgt Optimization & Full Finetune ✗ ≈ ✗

Dynamic Prompt Learning [49] ✗ ✓ Token Optimization & Null-text Inversion Dynamic Token Set ✓

iEdit [4] ✗ ✗ 0 Full Model Training ≈ ✓

Generic Methods
Concept Sliders [14] ✓ ✗ ≈ 0 LoRA [20] Adaptors ✓

Prompt-to-Prompt [17] ≈ ✗1 ✓ 2× Sampling ✗ ✗

HMC sampling from [12] ✗ ✓ Costly MCMC Sampling ✗ ✓

Asyrp [25] ✓ ✗ ≈ 0 Implicit Functions ft ✓

Our CLIP Difference Deltas ✓ ✓ 0 ✗ ✓

Our Learned Deltas ✓ ✓ 0 Edit Deltas ∆e ✓

Our Learned Deltas + Delayed Application [14,31] ✓ ✓ 0 Edit Deltas ∆e ≈ ✗

Our Learned Deltas + Prompt-to-Prompt [17] ✓ ✓ 2× Sampling Edit Deltas ∆e ✗

3 Method

T2I Diffusion models [18, 42] model a reverse diffusion process pθ(x0:T |c) that
enables sampling from the distribution of images pθ(x0|c) given a text prompt
condition c and a Gaussian noise sample xT . They iteratively denoise xT using a
diffusion model x̂0,θ(xt|c, t) which (implicitly) predicts the clean sample given a
noised image. This conditioning c is typically obtained using a CLIP [39] text
encoder ECLIP as a tokenwise embedding e = ECLIP(prompt).

Exerting Control over the Generation Process in Diffusion Models
We aim to influence the generated samples x0 ∼ pθ(x0|e), more specifically the
expression expr(Ai) of specific attributes Ai ∈ A of a specific subject Sj ∈ S.
This subject is described in the prompt at prompt[Sj ] (with the corresponding
embedding e[Sj ]) and is located in the generated image in x0,[Sj ]. The location of
the subject in the generated image x0,[Sj ] is generally not known ahead of time,
as it is dynamically determined during the generation process. Specifically, we
aim for a change of the expression of Ai of subject Sj .

To control the expression of an attribute Ai, the nature of this image generation
approach enables a limited number of aspects to target for influencing the
generation process. To control the global expression exprglobal(Ai), one option
is to modify the diffusion model by re-defining the expression of attributes on
1 Prompt-to-Prompt does support adding adjectives such as “old” in front of a target

subject, enabling coarse attribute modulation. Starting from this point, the weight
of the new adjective can be modulated, but this does not suffice to reliably achieve
continuous control from the starting image (see Fig. 7c).
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a global level [14, 23,25]. Another possibility is to directly modify the starting
noise latent xT [25] or the intermediate noise latents xt, either using dynamically
predicted [11,12, 19, 27, 28, 33] or fixed [5] auxiliary directions. Alternatively, one
can also influence how the diffusion model interprets the prompt embedding
e [17]. This allows for instance specificity through the prompt but does not work
well for continuous attribute expression control (see Fig. 7c). Finally, one can
directly modify the prompt embedding e, influencing the text encoder ECLIP, or
modifying the original tokens. Methods like [13,16,32,48] previously investigated
this approach for inserting instance appearance information, but not for fine-
grained attribute control.

As it already directly enables instance-specific coarse attribute control via text,
the tokenwise prompt embedding e is a natural choice as the basis for a method
for fine-grained attribute control, both in expression and instance-specificity. For
this to be practical, multiple requirements have to be fulfilled:
i) The diffusion model has to be capable of interpreting modified prompt embed-
dings e′ that do not directly correspond to a possible text prompt.
ii) Fine-grained changes of the token-wise prompt embedding have to be localized
in what they affect (specifically relating to a subject Sj in both prompt embed-
ding e and image x0). This localization has to be discoverable and interpretable.
iii) The tokenwise CLIP embedding space, as interpreted by the diffusion model,
has to locally (around anchor points from real words) approximate a Euclidean
manifold that behaves similarly across similar anchor points to enable composable
smooth local edits along fixed category-specific directions ∆e.
iv) These directions ∆e have to be practically discoverable.
We investigate requirements i-iii) in Sec. 3.1 and iv) in Sec. 3.2 and Sec. 3.3.

3.1 Learning Semantic Edits from Text/Image Pairs

Let us now investigate whether the previously mentioned conditions i-iii) are
fulfilled, and semantic directions that can be applied on top of embeddings of
actual captions exist in the tokenwise CLIP embedding space.

A wide range of previous works [13,16,32,48] found that the reconstruction
loss of a pre-trained T2I diffusion model can be used to backpropagate instance
appearance information to the prompt embedding. These instance text embed-
dings can then enable various personalization and image editing use cases in the
generation process. This implies that the first condition – the diffusion model
can interpret points that do not exactly lie in the text embedding space that
the CLIP model provides – is given. Otherwise, simple gradient descent-based
learning of very specific instance appearance information would not be plausible.

Although the objective is only based on pixel-wise reconstruction information,
we find that this general approach can also learn semantic information directly.
Using a single image/caption pair (x0,prompt), we apply a random amount of
noise to the image and backpropagate the reconstruction loss

L(x0, e+∆e) = Eϵ∼N (0,I),t∼U(0,T ]

[
w(t) ∥x0 − x̂0(αtx0 + σtϵ|e+∆e, t)∥22

]
(1)
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Fig. 2: We observe that starting from a target image (rightmost column) and a cor-
responding caption (leftmost column), edits ∆e to the tokenwise prompt embedding
e can be learned. Starting from the unmodified e, these edits go from the generated
images (unmodified images are marked in orange) towards the target image. Masking
this learned edit interpolation to only apply to one subject Sj (“car”, “bird”) post hoc
results in edits primarily affecting that subject.

through the diffusion model x̂0(·). We update a learnable delta ∆e that is added
to the prompt embedding e to minimize the regularized2 reconstruction loss. One
crucial detail is that the noise ϵ is randomly re-drawn at every step.

We find that this approach, indeed, leads to learned prompt embedding deltas
that capture semantic differences between the set of generated images given just
the prompt and the target image. Fig. 2 shows that they substantially reduce the
semantic gap between the image generated with the original prompt and the target
image. Additionally, linear interpolation between the original prompt embedding
and the embedding with the delta applied shows a clear semantic progression
from the originally generated image toward the target image. This indicates that
the tokenwise CLIP embedding space, as interpreted by the diffusion model, is at
least locally smooth in semantic meaning (condition iii). However, we also observe
“phase changes” where the image changes substantially during a short subset of
the interpolation trajectory for large changes, indicating that the embedding
space is not globally smooth.

Subject Specificity of Semantic Edit Deltas. We now investigate the
relationship between these learned tokenwise semantic edit deltas ∆e and the
initial prompt. At a high (semantic) level, our training method initially yields
an adaptation of the full prompt embedding that substantially closes the gap
between the originally generated images and the target images. We find (see
2 Implemented as weight decay through AdamW [29] on ∆e.
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Fig. 3: We observe that learned subject edit directions (such as for “woman” on the
left, from Fig. 2) learned on one image/text pair can be transferred to other subjects.
These can be transferred to novel prompts (unmodified images are marked in orange)
that mention the same subject (a) or even ones that mention other subjects (b). In
both cases, they cause the attributes (lip thickness, eyebrows, make-up, hairdo) of that
subject to change in a similar direction.

Fig. 2) that only applying the subject-specific token edit ∆e[Sj ] of the learned
edit delta ∆e suffices to obtain a mostly disentangled edit of Sj . This partial
edit is semantically close to the full edit, affecting the rest of the image only
minimally. Notably, we mask out the deltas only after training. This implies
that our training process associates semantic information to the specific token
corresponding to each subject Sj and that these token-specific deltas ∆e[Sj ] are
directly usable for influencing the subject’s attribute expression exprSj

(A) on a
semantic level. This provides a simple interpretable way to localize modifications
(condition ii).

Transferability of Semantic Edit Deltas. Finally, we investigate the trans-
ferability of the learned ∆e[Sj ] to other prompts. Instead of applying the subject-
specific ∆e[Sj ] to Sj in the same prompt, we transfer deltas learned on one
text/image pair to a new prompt. First, we test transferring a delta ∆e[Sj ]

learned on one subject Sj (such as “woman”) from one prompt to the same word
in a new prompt, as shown in Fig. 3a. This results in a change of attribute
expression exprS′

j
(A) on the new subject S′

j semantically similar to the change
seen on the original prompt (see Fig. 2). These deltas can also be transferred
to other subjects Sk of a similar category (such as from “woman” to “man”, see
Fig. 3b). There, they result in similar changes to attribute expression exprSk

(A)
again but keep the underlying subject change (such as the gender change in this
example) from the base text token intact. This shows that our previously defined
condition iii) is effectively fulfilled.

3.2 Identifying Specific Attribute Deltas from Contrastive Prompts

Sec. 3.1 showed that subject-specific attribute modifications can be achieved
by modifying the token(s) of the noun corresponding to the subject without
requiring additional words. This implies that the CLIP text encoder likely already
performs aggregation of semantic attributes into the corresponding subject, which
is corroborated by [41]. Otherwise, the diffusion model would likely not learn to
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interpret the tokenwise embeddings this way. This is also corroborated by Li et
al. [26], who find that concepts will be present in multiple places in the tokenwise
embedding instead of being localized to just its specific tokens. Despite adding
attributes typically affecting a multitude of token embeddings, our previous
findings indicate that just modifying the token e[Sj ] already suffices to enable
substantial semantic changes.

Motivated by this finding, we propose identifying semantic directions in the
tokenwise embedding space that affect specific attributes Ai from contrastive
prompts similar to [14] (such as “a young person” vs. “an old person” for the
“age” attribute, both prompts using the same noun for Sj). We first obtain the
tokenwise CLIP embeddings ECLIP(promptAi,+) and ECLIP(promptAi,−) for the
positive and negative prompts, respectively. Then, we compute the difference
between the token embedding of the subject in both embeddings

∆eAi
= (ECLIP(promptAi,+))[Sj ] − (ECLIP(promptAi,−))[Sj ]. (2)

This directly yields a direction that corresponds to the target attribute Ai. To
obtain more robust estimates of this direction, we average it over a multitude of
contrastive prompt pairs that describe the same concept.

Sampling. During sampling, we simply add these learned deltas ∆eAi
to e[Sk] of

the target subject(s) Sk with the desired scale αi. We then pass this modified
prompt embedding to the diffusion model to generate an image causing no
additional computational cost over standard sampling. This yields similar behavior
to adding adjectives such as “old” or “young” to the subject in the prompt but
additionally enables control on a smooth scale while retaining subject-specificity.

Two examples of these learned directions are shown in Fig. 4. They illustrate
that this approach works to identify directions that affect attributes such as a
vehicle’s price but also often exhibits unrelated correlations such as car orientation
or bike size. As the CLIP text encoder is causal, this approach is also limited to
attributes that can be described as a prefix to the target subject noun.

3.3 Learning Robust Fine-Grained Attribute Deltas

Inspired by our findings from Sec. 3.1, we introduce a method for targeted, fine-
grained, subject-specific control of attributes in T2I generation. We previously
found that editing token embeddings of a specific subject Sj directly modulates its
semantic attribute expression exprSj

(A) and that these edits can be transferable.
Thus, we propose to leverage this approach to introduce fine-grained control
into T2I models without having to modify them, that is, learning edit directions
∆eAi

to the embedded prompt e that directly correspond to subject-specific
fine-grained modulations of the expression exprSj

(Ai) of a specific attribute Ai.
In general, to limit the ∆eAi to apply to a specific subject Sj , we only modify

the part of e that corresponds to Sj :

e′(e, αi∆eAi)[Sj ] = e[Sj ] + αi∆eAi . (3)

This modified embedding is then passed to the diffusion model in place of e.
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Vehicle Price
+−

Fig. 4: Two examples showing variations along the “vehicle price” direction identified
using our CLIP embedding difference method (Sec. 3.2). Unmodified images are marked
in orange. These directions successfully capture the target attribute and allow for
fine-grained modulation but also show unwanted side-effects such as flipping the car’s
orientation, which Sec. 3.3 addresses.

Vehicle Price
+−

Fig. 5: The same two examples as in Fig. 4, but with our learned edit deltas instead of
our CLIP embedding differences. Unmodified images are marked in orange. Spurious
correlations are reduced substantially.

Training During training, we utilize the diffusion model’s world knowledge,
specifically about which changes in the generated images x0 correspond to
modulations of specific high-level attributes Ai. We continue using contrastive
text prompts that describe the target attribute Ai to elicit a fine-grained direction
in the model’s noise prediction space that corresponds to that attribute. We then
backpropagate this direction through the diffusion model, distilling it into our
delta ∆eAi . Like in [14], this approach learns robust deltas ∆eAi from just a set
of contrastive prompts and does not require training images.

For each optimization step, we start by generating a random image x0,a

from the target category using a random prompt (such as “a photo of a person”)
with standard sampling settings. This image will serve as the anchor for the
optimization process. Starting from a noised version of this image xt,a at a
random diffusion timestep t, we then generate three predictions with the diffusion
model: one prediction x̂0,a with the original anchor prompt and two predictions
x̂0,+, x̂0,− with modified prompts. For those, added adjectives either increase
(such as “a photo of an old person”) or decrease (such as “a photo of a young
person”) the expression of the target attribute expr(Ai) (such as age).

As is well-known, classifier-free guidance [19] can effectively merge multiple
such predictions into a new one, allowing for continuous application of different
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Fig. 6: Expression of Global Correlations with Different Sampling Methods:
When changing the age of the woman (age delta on “woman”) starting from the prompt
“A photo of a beautiful woman sitting on a sofa in her flat”, the background can
be expected to change with her age. Using different sampling methods (b and c)
substantially reduces these correlations (see, e.g., the sofa & plants on the shelves).
Unmodified images are marked in orange. Delta scales αi are identical across rows.

predictions. Starting from x̂0,a, we can increase or decrease expr(Ai) with

x̂0,target(αi) = x̂0,a + αi · (x̂0,+ − x̂0,−) (4)

Here, the guidance scale αi controls both the direction (sign) and magnitude
(value) of the attribute expression change. We can then use these targets to train
our semantic edit delta ∆eAi

. Randomly sampling αi during training allows us
to reliably continuously modulate Ai later on. When minimizing the difference
between the diffusion model’s prediction and the target prediction, we then also
adjust ∆eAi by αi, leading to our delta training loss formulation:

Ldelta = Eαi

[
w(t) ∥x̂0,target(αi)− x̂0(xt,a|e′(e, αi∆eAi

), t)∥22
]
. (5)

With a set of suitable prompts to describe increasing and decreasing expressions
of a target attribute Ai, this objective learns robust attribute deltas ∆eAi

.
During sampling, we use the same methodology for applying them as in

Sec. 3.2. Compared to the results obtained using the CLIP text embedding
differences (see Fig. 4), these results (see Fig. 5) also successfully capture the
target attribute but exhibit fewer artifacts, such as the car’s orientation flipping
and its age changing (see Sec. 4.1).

3.4 Global Correlations

Generally, image generation models learn correlations between different parts of
the image. As we do not modify the diffusion model itself, directly applying our
learned edit deltas ∆eAi to a specific subject Sj causes the desired change in at-
tribute expression exprSj

(A), but additionally captures the entanglement between
this subject’s attributes and the attributes of the rest of the generated image
based on the diffusion model’s world knowledge. This means that this attribute
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Fig. 7: Continuous Attribute Modifications. Unmodified images are marked in
orange. (a) Variety of Attributes: Our learned edit deltas can capture a wide
range of attributes and allow fine-grained control over their expression. All samples
are generated using a delta scale from -2 to 2 without applying either of our two
disentanglement strategies. (b) Zero-Shot Transfer: Our deltas can be learned on
one model (SDXL) and transferred to others (including non-diffusion models) without
re-training. (c) Standard P2P [17] does not allow for continuous control starting from
the original image without adjectives, only from inserted adjectives (“young”, “old”).

change does not only apply to the part of the image x0,[Sj ] corresponding to Sj

but also the rest of the image (see Fig. 6a). This helps to enable the generation
of plausible images, as the entanglement is based on real-world dependencies.
Modeling these correlations, however, might not always be desirable.

If the modeling of dependencies between the subject and its surroundings is
not desired, we can augment our sampling method (without having to re-learn
∆eAi) during inference time. Following [14,31], simply not applying the edit delta
for the first few steps of the diffusion generation process already substantially
reduces the expression of these correlations at no additional computational
cost. This especially helps to retain the original global image structure, as it is
determined in the first steps of the generation process [17]. Fig. 6b shows an
example of this. Since our model only alters the text embedding, we can also
directly pair it with Prompt-to-Prompt [17] to further improve appearance and
structure disentanglement regarding the edit at the cost of doubling the inference
cost. Fig. 6c shows the corresponding example.
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4 Experiments

We evaluate our proposed method in a variety of settings, primarily on Stable
Diffusion XL [38], a standard off-the-shelf large-scale T2I diffusion model. We
sample with a standard classifier-free guidance [19] scale of 7.5. To test our
method, we train a large variety of edit deltas for various different attributes,
primarily focused on humans but also including vehicles and furniture. Fig. 7a
shows a subset of these edit deltas. Additionally, Fig. 7b shows edit deltas learned
on SDXL applied to other (diffusion and non-diffusion) models that use one of
the two CLIP text encoders in a zero-shot manner. Quantitatively, we evaluate
on human attributes. We sample 25 images per target subject noun, resulting in
100 images for each attribute delta at each scale. In addition to the experiments
presented in this section, we also investigate transferring edit deltas learned on
one set of nouns to novel nouns in Sec. F.2.

4.1 Learned Edit Deltas vs. CLIP Embedding Differences

First, we compare the attribute edit directions based on simple CLIP embedding
differences (Sec. 3.2) with the learning-based ones (Sec. 3.3). For this comparison,
we limit ourselves to a subset of edit deltas that can easily be described by prefixes
in front of the subject (“young person”, not “person wearing a colorful outfit”).
Here, the causality of the CLIP text encoder inherently limits the method based on
embedding differences. Using only the applicable subset avoids this drawback and
ensures a fair comparison of the methods. Qualitatively, the directions obtained
by taking differences of the CLIP token embeddings exhibit more unwanted side
effects. Comparing Fig. 4 and Fig. 5, for example, the car flips its orientation
in both directions in the difference-based setup. To quantitatively evaluate the
occurrence of undesired side effects, we assess the attained expression expr(Ai)
of the target attribute Ai against the change in the image x. Following prior
art [14, 32], we evaluate attribute expression change ∆expr(Ai) using the change
of CLIP similarity of the generated image I to a target prompt. As our attribute
edit deltas are bi-directional, we compare to the prompt prompt+ that describes
the positive direction (such as “old person”) and the prompt prompt− for the
negative direction (“young person”). We compute this bi-directional relative CLIP
score as

CLIPBi(I) = cos(CLIPI(I),CLIPT (prompt+))−cos(CLIPI(I),CLIPT (prompt−)),
(6)

We then measure relative change to a reference image Iref without delta applied

∆CLIPBi(I, Iref ) = CLIPBi(I)− CLIPBi(Iref ). (7)

Comparing this score against the overall change in the image yields similar
performance of learned and difference-based edit deltas in positive attribute
expression directions (Fig. 8). In the negative direction, however, the difference-
based method struggles to successfully capture attribute expression without
substantially altering the overall appearance of the image.
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Fig. 8: Attribute expression change (horizontal axis) against overall change in the image
(vertical axis) as similarity/difference between the modified image at some scale and
the reference image at scale 0. We compare learned edit deltas (Sec. 3.3) with CLIP
text difference deltas (Sec. 3.2) at scales from -5 to 5 and find that our learned deltas
allow the same attribute expression control at lower image deviation.
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Fig. 9: Attribute expression change (horizontal axis) and overall change in the image
(vertical axis) for our learned edit deltas (Sec. 3.3) with different sampling methods.
For edit deltas targeting people, we also report person identity similarity (ReID).

4.2 Global Correlations

To quantitatively evaluate the capturing of global correlations (see Sec. 3.4) when
using different sampling methods, we use the same evaluation methodology as
in Sec. 4.1. Additionally, we use ArcFace-based [10] person re-identification for
edit deltas on human attributes to measure how much the person’s identity is
affected by the attribute change. Fig. 9 shows that, for the same level of attribute
expression, delayed application of the learned delta helps to substantially reduce
unrelated changes in the image (especially as measured by LPIPS) at no additional
cost during sampling. Combining our method with Prompt-to-Prompt [17] further
reduces these unrelated changes, but at the cost of doubling the sampling time.

4.3 Compositional & Subject-Specific Attribute Editing

In the general case, we find that our learned edit deltas are directly composable.
This means that multiple edit deltas can be applied to the same subject, where
their effects stack yielding fine-grained control over multiple attributes simulta-
neously as shown in Fig. 10a, with a large number of additional samples shown
in appendix Sec. F.4. As they are subject-specific, multiple learned edit deltas
can also be applied to different subjects (even ones of the same subject category)
by applying each edit delta to just one of the multiple subjects mentioned in
a prompt with individual scales as shown in Fig. 10b and Fig. 1a. Numerous
additional examples are shown in appendix Sec. F.3.
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Fig. 10: (a) Multiple attribute edit deltas can be composed simply by adding them.
(b) Attribute deltas can be applied to different subjects with different magnitudes.
Unmodified images are marked in orange.

5 Conclusion

This work uncovers the powerful capabilities of the tokenwise CLIP [39] text
embedding for exerting control over the image generation process in T2I diffusion
models. Instead of just acting as a discrete space of embeddings of words, we
find that diffusion models are capable of interpreting local deviations in the
tokenwise CLIP text embedding space in semantically meaningful ways. We use
this insight to augment the typically rather coarse prompt with fine-grained,
continuous control over the attribute expression of specific subjects by identifying
semantic directions that correspond to specific attributes. Since we only modify
the tokenwise CLIP text embedding along pre-identified directions, we enable
more fine-grained manipulation at no additional cost in the generation process.

Limitations & Future Work This work is a step towards revealing the hidden
capabilities of the text embedding input to common large-scale diffusion models
and making them usable in straightforward ways. While our approach works
for different off-the-shelf models without modifying them, it is also inherently
limited by their capabilities. Specifically, our method inherits the limitation
that diffusion models sometimes mix up attributes between different subjects.
Complementary methods [7, 41] reduce these problems substantially, and future
work could investigate their combination with our method in depth.

Impact Statement This work aims to improve the capabilities of text-to-
image (T2I) diffusion models by introducing an efficient, simple-to-use method
of influencing the expression of attributes of specific subjects in the generated
images in a fine-grained manner. While, in general, similar targeted control
has been possible before by utilizing editing-based methods on the original
generated images, where generated images are inverted and re-generated with
changes localized with custom edit masks, this method’s simplicity and efficiency
potentially enables such a level of control for a wider audience. This, like other
works in the space of improving the control over image synthesis models, carries
the risk of further enabling the generation of harmful or deceptive content.
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F Additional Results

F.1 Fine-Grained Control

Compared to Concept Sliders [14], which enables fine-grained control over at-
tribute expression on a global level (i.e., shared over all instances), our method
allows targeting the attribute expression control to specific subjects by selecting
the target subject via the prompt. Compared to Prompt-to-Prompt [17] (P2P),
which provides subject-specific control like our method in Fig. 11, we find that our
method offers substantially more fine-grained control over attribute expression
when starting from the image generated from a prompt such as “a photo of a
person”. For P2P, we start from the prompt “a photo of a beautiful man”, insert
an adjective that describes the target direction (e.g., “a photo of a beautiful old
man”), and then re-weight the adjective to control its expression3. Here, it is
obvious that the initial, coarse changes (such as from a neutral age to “old”) work
well, but fine-grained modulations do not in the general case. Specifically, these
re-weightings allow slight modulations around “old”, but they do not allow fine-
grained control starting from the original image. This makes sense intuitively, as
we previously observed (see Sec. 3.2) that attributes are aggregated in the subject
by the CLIP text encoder and that the diffusion model uses these aggregated
attributes. This means that simply reducing the weight of the adjective can not
suffice to enable smooth interpolation between the original attribute expression
(as it was in the prompt that did not contain any adjectives relating to the target
concept) and the changed attribute expression, at least for models that use text
encoders that exhibit this aggregating behavior.
3 This approach is directly modeled after the one used in the official implementation at
https://github.com/google/prompt-to-prompt/blob/main/prompt-to-prompt_
stable.ipynb to modulate the inserted word “fried” in the fried potatoes example
and uses the same hyperparameters.
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P2P [17] Age“young” “old”
++ −−

P2P [17] Width“thin” “fat”
++ −−

Our Age
+−

Our Width
+−

Fig. 11: Comparison of Capabilities for Continuous Attribute Modulation.
We compare the capabilities of our learned deltas for continuous attribute modulation
with that of Prompt-to-Prompt [17]. The unmodified image is marked in orange. Our
samples are generated using attribute deltas being applied with a linear delta scale from
-2 to 2 across each, with the deltas being applied after 10/50 steps (Delayed Sampling).
Those for P2P are generated starting from the same image by adding an adjective and
then modulating its weight post hoc.
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F.2 Subject Noun Transferability

We investigate how much the attribute deltas can generalize across different nouns
that describe the same subject. We generally learn them on a set of different
nouns that describe a subject of a specific category (e.g., deltas for people with
the words “man”, “woman”, and “person”). However, these words typically do not
cover the whole range of possible nouns that can be used to describe subjects of
a general category. Ideally, one could learn one delta for one concept, such as
age, on a small set of nouns and generalize across all nouns of a category or even
to subjects of other categories.

First, we test the generalization of deltas learned for people on “man”, “woman”,
and “person” and apply them to increasingly more specific nouns that describe
people. Results are shown in Figs. 12 and 13, and all prompts are “a photo of
a beautiful <noun>”. As a baseline, we apply them to “child”, “mother”, and
“father”, three words that are previously unseen but still describe very high-level
sub-categories of people. We find that the learned deltas still work as expected.
Similarly, for categories of jobs such as “doctor”, “barista”, or “firefighter”, which
are substantially more specific and also substantially affect their clothing and the
rest of the image, we find that they also work well. Finally, applying these learned
deltas to very specific nouns such as the names “John” and “Jane” also works as
expected. This demonstrates that these learned deltas can generalize well across
a wide range of unseen nouns describing instances of a specific category, even if
they were only learned on a small set of high-level, potential nouns.
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Fig. 12: Subject Noun Transferability. We stress-test applying deltas that have
been learned only on the nouns “man“, “woman“, and “person“ to various other nouns
that describe people. The unmodified image is marked in orange. All samples are
generated using attribute deltas being applied with a linear delta scale from -2 to 2
across each, with the deltas being applied after 10/50 steps (Delayed Sampling).
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Fig. 13: Subject Noun Transferability. We stress-test applying deltas that have
been learned only on the nouns “man“, “woman“, and “person“ to various other nouns
that describe people. The unmodified image is marked in orange. All samples are
generated using attribute deltas being applied with a linear delta scale from -2 to 2
across each, with the deltas being applied after 10/50 steps (Delayed Sampling).
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F.3 Multi-Subject Attribute Editing

Figs. 14 to 17 show examples of modulating attributes in a subject-specific
manner using our learned deltas. These show that various attributes can be
applied to subjects individually, even if both subjects are of the same category
(e.g., “people”). A slight correlation between, e.g., the age of the man and the
age of the woman in Fig. 14 is visible and expected, as the diffusion model also
models these dependencies between different subjects in the generated image. By
applying both deltas with different strengths, the whole spectrum of combinations
can be achieved.

Woman Age
+−

M
an

A
ge

+

−

Fig. 14: Multi-Subject Attribute Modifications. The unmodified image is marked
in orange. All samples are generated using one attribute delta each being applied to
the two subjects mentioned in the prompt with a linear delta scale from -2 to 2 across
each, with the deltas being applied after 10/50 steps (Delayed Sampling).
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Fig. 15: Multi-Subject Attribute Modifications. The unmodified image is marked
in orange. All samples are generated using one attribute delta each being applied to
the two subjects mentioned in the prompt with a linear delta scale from -2 to 2 across
each, with the deltas being applied after 10/50 steps (Delayed Sampling).
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Fig. 16: Multi-Subject Attribute Modifications. The unmodified image is marked
in orange. All samples are generated using one attribute delta each being applied to
the two subjects mentioned in the prompt with a linear delta scale from -2 to 2 across
each, with the deltas being applied after 10/50 steps (Delayed Sampling).
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Fig. 17: Multi-Subject Attribute Modifications. The unmodified image is marked
in orange. All samples are generated using one attribute delta each being applied to
the two subjects mentioned in the prompt with a linear delta scale from -2 to 2 across
each, with the deltas being applied after 10/50 steps (Delayed Sampling).
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F.4 Compositional Attribute Editing

We show some 2d grids where two attributes are modulated for the same target
subject in an additive manner in Figs. 18 to 23. Both attribute deltas interact
with each other according to the world knowledge of the diffusion model to
produce a realistic image for every combination. This can especially be seen
in Fig. 20, where the variant with increased age and makeup has substantially
reduced wrinkles compared to the version with reduced makeup.

Age
+−

P
ri

ce

+

−

Fig. 18: Compositional Attribute Modifications. The unmodified image is marked
in orange. All samples are generated using two attribute deltas being applied additively
with a linear delta scale from -2 to 2 across each, with the deltas being applied
after 10/50 steps (Delayed Sampling).
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Fig. 19: Compositional Attribute Modifications. The unmodified image is marked
in orange. All samples are generated using two attribute deltas being applied additively
with a linear delta scale from -2 to 2 across each, with the deltas being applied
after 10/50 steps (Delayed Sampling).
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Makeup
+−

A
ge

+

−

Fig. 20: Compositional Attribute Modifications. The unmodified image is marked
in orange. All samples are generated using two attribute deltas being applied additively
with a linear delta scale from -2 to 2 across each, with the deltas being applied
after 10/50 steps (Delayed Sampling).
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Fig. 21: Compositional Attribute Modifications. The unmodified image is marked
in orange. All samples are generated using two attribute deltas being applied additively
with a linear delta scale from -2 to 2 across each, with the deltas being applied
after 10/50 steps (Delayed Sampling).
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Fig. 22: Compositional Attribute Modifications. The unmodified image is marked
in orange. All samples are generated using two attribute deltas being applied additively
with a linear delta scale from -2 to 2 across each, with the deltas being applied
after 10/50 steps (Delayed Sampling).
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Fig. 23: Compositional Attribute Modifications. The unmodified image is marked
in orange. All samples are generated using two attribute deltas being applied additively
with a linear delta scale from -2 to 2 across each, with the deltas being applied
after 10/50 steps (Delayed Sampling).
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F.5 Continuous Attribute Modification

To illustrate the breadth of attributes that can be modulated and how continuous
the attribute changes are, we show a range of our learned delta attributes being
continuously modulated. Figs. 24 to 27 show examples where attribute deltas are
applied with our delayed sampling, Fig. 28 shows attribute deltas applied for the
full sampling time. For every category, we re-use the same sample instances as a
starting point.

{Bike, Car} Age
+−

{Bed, Chair} Age
+−

Fig. 24: Continuous Attribute Modifications. Unmodified images are marked in
orange. All samples are generated using a linear delta scale from -2 to 2, with the
deltas being applied after 10/50 steps (Delayed Sampling).
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Age
+−

Fitness
+−

Tiredness
+−

Fig. 25: Continuous Attribute Modifications. Unmodified images are marked in
orange. All samples are generated using a linear delta scale from -2 to 2, with the
deltas being applied after 10/50 steps (Delayed Sampling).
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Elegance
+−

Freckled
+−

Groomed
+−

Fig. 26: Continuous Attribute Modifications. Unmodified images are marked in
orange. All samples are generated using a linear delta scale from -2 to 2, with the
deltas being applied after 10/50 steps (Delayed Sampling).
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Makeup
+−

Tan
+−

Width
+−

Fig. 27: Continuous Attribute Modifications. Unmodified images are marked in
orange. All samples are generated using a linear delta scale from -2 to 2, with the
deltas being applied after 10/50 steps (Delayed Sampling).
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Hair Length
+−

Scarred
+−

Hair Curliness
+−

Fig. 28: Continuous Attribute Modifications. Unmodified images are marked in
orange. All samples are generated using a linear delta scale from -2 to 2, with the
deltas being applied for all steps.
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G Implementation Details

This section gives details about the implementation of our method. We generally
use the default settings as set in diffusers4-v0.25.0 with a classifier-free guidance
[19] scale of 7.5 and 50-step DDIM [45] sampling unless specified otherwise.

G.1 Main Method

Data: Contrastive Prompts As the basis from which our edit deltas (both
the learned ones in Sec. 3.3 and the difference-based ones in Sec. 3.2), we use
sets of contrastive prompts and prefixes (the same general setup as in [2, 14]).
These are composed of multiple tuples of 3 prompts with a negative, neutral,
and positive prompt each (e.g., (“young person”, “person”, “old person”) or (“weak
woman”, “woman”, “strong woman”). These tuples generally include both multiple
ways of expressing the attribute (e.g., “muscular”, “strong”, “body builder” for the
“muscularity” attribute) and, if applicable, multiple ways of naming the target
subject (e.g., “person”, “woman”, “man” for deltas targeting people). Additionally,
we keep a list of prompt prefixes to achieve more variation. These span some
aspects orthogonal to the target attribute (e.g., “a photo of a {∅, mountain, road,
BMX, folding, big, small, green, red, blue}” for the “age” attribute for “bike”).
These variations of expressing the attribute and prefixes result in a large number
of combinations for contrastive prompts, which, in turn, enables a more robust
estimation of the underlying direction that modulates this target attribute in the
prompt embedding.

Training (Sec. 3.3) The tokenwise edit deltas ∆eAi
are implemented as learn-

able parameters of shape 1× dCLIP, with dCLIP being the embedding dimension
of the CLIP text encoder. For SDXL [38], this is 2048. This delta is applied
additively with scaling according to αi to the target subject tokens (e.g., “person”
in the case of “a photo of a strong person”) in the original text embedding e. If
the target subject consists of multiple tokens, we broadcast ∆eAi

across those
tokens, although this is only rarely the case in practice.

We train our learned edit deltas ∆eAi
for 1000 steps at a batch size of 10.

We use AdamW [29] with a learning rate of 0.1, (β1, β2) = (0.5, 0.8), and weight
decay of 0.333. All learned deltas are trained on a single A100 with 40GB of
VRAM using a bfloat16 version of SDXL [38].

For every entry in the batch, we use a random combination of prefix prompt
and prompt tuple and sample an image with the neutral prompt and a random
seed, stopping at a random timestep. We then compute the “vanilla” prediction
starting from that step for all three prompts, resulting in x̂0,a, x̂0,+, x̂0,−. In
contrast to Gandikota et al. [14], who use a similar approach, we sample our
starting samples using standard sampling instead of a modified generation process.

We then sample four values for αi ∼ U([−5, 5] \ (−0.1, 0.1)) and compute
Ldelta (Eq. (5)) using them. We found that sampling multiple values for αi here
4 https://github.com/huggingface/diffusers

https://github.com/huggingface/diffusers
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boosts the performance of our learned deltas at little overhead cost (as the online
sampling of the original images is the most costly part) and that values for αi very
close to zero were not particularly useful for the training process. Empirically, we
find that most of our learned edit deltas are already close to convergence after 5
optimization steps, but we keep training for the full time for simplicity.

CLIP Embedding Differences (Sec. 3.2) For the edit deltas determined
via CLIP embedding differences, we apply the same idea as for the trained
version (Sec. G.1), but simply compute the difference between the subject token
embeddings as in Eq. (2) and average them over the set of prompts.

Inference During inference, we add the learned deltas ∆eAi to the subject
target tokens. The methodology here is the same as described in Sec. G.1.

Composition When combining multiple deltas ∆eAi during a single generation,
we add each delta with the chosen scale to the chosen subject. Multiple deltas
that are to be applied to the same subject are simply summed, making the results
invariant to the order in which they are applied.

Sampling We use three sampling variations in Sec. 3.4. For the “Normal Sampling”
version, we simply apply ∆eAi during the whole inference process. For “Delayed
Sampling”, we do not apply it for the first few steps (e.g., 10 for a 50-step
sampling process) and then apply it, as done in [14]. For our combination with
Prompt-to-Prompt [17], we use a public reference implementation5 and use the
word replacement methodology to replace the original subject prompt embedding
with our modified subject prompt embedding (original plus αi∆eAi).

G.2 Text/Image Pair Deltas

For learning full image deltas on a text/image pair, we use the same optimizer
setup as in Sec. G.1 with AdamW [29] with a learning rate of 0.1, (β1, β2) =
(0.5, 0.8), and weight decay of 0.333. We learn deltas of shape N × dCLIP, with
dCLIP being the embedding dimension of the CLIP text encoder and N being
the number of tokens in the tokenwise prompt embedding. We do not optimize
the start-of-sequence and end-of-sequence tokens or the pooled embeddings in
the case of SDXL. We train for 75 steps at a batch size of 1 and randomly select
the noise level at each step.

G.3 Evaluation

To compute perceptual image differences, we use LPIPS [50] as implemented in
the lpips6 package with default settings at a resolution of 2562 (interpolated bi-
linearly). For CLIP scores, we use the standard implementation in torchmetrics7

5 https://github.com/RoyiRa/prompt-to-prompt-with-sdxl
6 https://github.com/richzhang/PerceptualSimilarity
7 https://github.com/Lightning-AI/torchmetrics

https://github.com/RoyiRa/prompt-to-prompt-with-sdxl
https://github.com/richzhang/PerceptualSimilarity
https://github.com/Lightning-AI/torchmetrics
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(which outputs cosine similarities scaled to [0, 100]) with default settings, including
the default CLIP choice of the CLIP-ViT-L/14 trained by OpenAI [39]. For
image-image similarity evaluations with DINOv2 [34], we use the ViT-L/14
variant with registers [9] and bi-linearly resize to 2242 before passing them to
the model and comparing the cosine similarity of the CLS token outputs. Finally,
for ReID evaluations, we use the ArcFace [10] implementation provided by the
insightface8 python package with the default buffalo_l model, where we
return the cosine similarity of the embeddings of the detected faces.

H Image Copyright

Fig. 2 uses two photos obtained from Unsplash, one of a blue car in the garage9

by Martin Katler and one of a woman with a bird on her hand10 (which is also
used in Fig. 3) by Ali Esfehaniyan. Both are licensed under the Unsplash license11.
All other images shown in the paper are generated using Stable Diffusion XL [38]
unless noted otherwise.

8 https://github.com/deepinsight/insightface
9 https://unsplash.com/photos/a- blue- car- parked- in- a- parking- garage-
Roq9jZmPetA

10 https://unsplash.com/photos/a- woman- with- a- bird- on- her- shoulder-
vpIvmZBurgQ

11 https://unsplash.com/license

https://github.com/deepinsight/insightface
https://unsplash.com/photos/a-blue-car-parked-in-a-parking-garage-Roq9jZmPetA
https://unsplash.com/photos/a-blue-car-parked-in-a-parking-garage-Roq9jZmPetA
https://unsplash.com/photos/a-woman-with-a-bird-on-her-shoulder-vpIvmZBurgQ
https://unsplash.com/photos/a-woman-with-a-bird-on-her-shoulder-vpIvmZBurgQ
https://unsplash.com/license
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