
The DipEncoder: Enforcing Multimodality in Autoencoders
Collin Leiber
LMU Munich

Munich, Germany
leiber@dbs.ifi.lmu.de

Lena G. M. Bauer
Faculty of Computer Science

UniVie Doctoral School Computer Science
ds:UniVie

University of Vienna, Vienna, Austria
lena.bauer@univie.ac.at

Michael Neumayr
LMU Munich

Munich, Germany
michael.neumayr@campus.lmu.de

Claudia Plant
Faculty of Computer Science

ds:UniVie
University of Vienna, Vienna, Austria

claudia.plant@univie.ac.at

Christian Böhm
Faculty of Computer Science

University of Vienna, Vienna, Austria
christian.boehm@univie.ac.at

ABSTRACT
Hartigan’s Dip-test of unimodality gained increasing interest in un-
supervised learning over the past few years. It is free from complex
parameterization and does not require a distribution assumed a pri-
ori. A useful property is that the resulting Dip-values can be derived
to find a projection axis that identifies multimodal structures in the
data set. In this paper, we show how to apply the gradient not only
with respect to the projection axis but also with respect to the data
to improve the cluster structure. By tightly coupling the Dip-test
with an autoencoder, we obtain an embedding that clearly separates
all clusters in the data set. This method, called DipEncoder, is the
basis of a novel deep clustering algorithm. Extensive experiments
show that the DipEncoder is highly competitive to state-of-the-art
methods.

CCS CONCEPTS
• Information systems→ Clustering; • Computing method-
ologies → Cluster analysis; Dimensionality reduction and mani-
fold learning; Neural networks.

KEYWORDS
Hartigan’s Dip-test, Deep Clustering, Dimensionality reduction

ACM Reference Format:
Collin Leiber, Lena G. M. Bauer, Michael Neumayr, Claudia Plant, and Chris-
tian Böhm. 2022. TheDipEncoder: EnforcingMultimodality in Autoencoders.
In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD ’22), August 14–18, 2022, Washington, DC, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3534678.3539407

1 INTRODUCTION
The interest in analyzing large amounts of high-dimensional data
such as images, videos or texts increased significantly in recent
years. Since such data sets are highly complex both in terms of their

This work is licensed under a Creative Commons Attribution
International 4.0 License.

KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9385-0/22/08.
https://doi.org/10.1145/3534678.3539407

Figure 1: Architecture of the DipEncoder. The illustration
shows the two-dimensional result of the DipEncoder on a
subset of the Optdigits data set. We can see that each com-
bination of clusters receives its own projection axis within
the DipModule. The histogram depicts the purple and yellow
clusters projected onto their corresponding projection axis
𝑝1. In addition, the figure shows the Dip-values of the purple
cluster (0.012), the yellow cluster (0.014), and the combination
of the two (0.179). From this, we can conclude that both clus-
ters are unimodal while the combination is multimodal.

interpretability and the time it takes to process them, particular
analysis methods are usually required.

An established strategy to handle high-dimensional data is to run
a dimensionality reduction technique before the desired analysis
method. The most common technique is probably the Principal
Component Analysis (PCA) [10]. With the growing availability
of computing power, Neural Networks (NNs) have also become
more popular. Due to their high abstraction capabilities, they offer
a range of powerful analysis options. Special architectures can
even favor the performance concerning certain data types (e.g.,

846

https://doi.org/10.1145/3534678.3539407
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3534678.3539407
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3534678.3539407&domain=pdf&date_stamp=2022-08-14

KDD ’22, August 14–18, 2022, Washington, DC, USA Collin Leiber et al.

Convolutional Neural Networks (CNNs) [23] for image data). A
strategy that combines dimensionality reduction with NNs is to
make use of an autoencoder (AE) [1]. This feed-forward NN learns
a lower-dimensional embedding of the input data set. One can then
execute further analysis procedures on this embedding.

In recent years, the field of clustering has increasingly taken
up this idea. Corresponding procedures, also referred to as Deep
Clustering (DC) methods, usually use an AE to learn an embedding
in which the actual clustering procedure is applied, allowing the
clustering objective to be updated simultaneously to the embedding.
Hereby, the runtime can drop significantly due to the lower dimen-
sionality and we counteract the curse of dimensionality while at
the same time using the abstraction capabilities of the AE.

In this paper, we present the DipEncoder. This NN combines
an AE with Hartigan’s Dip-test of unimodality [14]. The Dip-test
is a parameter-free statistical test that returns a Dip-value within
the interval (0, 0.25], which specifies the multimodality of a one-
dimensional data set. Dip-values close to 0 indicate unimodality
of the input samples, while larger values indicate that the samples
contain at least two modes. Our goal is to use this test to create
an embedding that clearly separates different groups of data. In
other terms, we want to achieve an embedding that shows high
modality between each combination of clusters. Figure 1 illustrates
this idea by the high Dip-value of 0.179 between the purple and
yellow cluster. However, we cannot simply maximize the Dip-value
since we have to be careful that this process does not pull one of
the clusters apart to achieve a multimodal structure. Therefore, we
also want to minimize the modality within the separate clusters. In
Figure 1 this corresponds to the small Dip-values of 0.012 for the
purple and 0.014 for the yellow cluster. Since the Dip-test can only
process one-dimensional samples, we create individual projection
axes for each combination of clusters and store them within the
so-called DipModule. These axes are represented in Figure 1, for
example, by the red line 𝑝1 between the purple and yellow cluster.
Using this architecture, we can leverage the gradient of the Dip-test
to optimize the projection axes simultaneously to the embedding.
We further use this idea to show how we can use the Dip-test
to update the cluster labels. Building on this, we present a novel
DC algorithm based solely on the Dip-test which does not require
clustering-specific parameters other than the number of clusters 𝑘 .

Our main contributions can be summarized as follows:

• First, we present the previously unused gradient of the Dip-
value with respect to the data.

• We show how to use the gradients of the Dip-value in combi-
nation with an AE for supervised dimensionality reduction.

• Based on this, we develop a procedure that updates the clus-
ter labels using only the Dip-test.

• This method is extended to create a novel Deep Clustering al-
gorithm that does not require clustering-specific parameters
apart from the number of clusters.

2 RELATEDWORK
In the following, we describe a few methodologies that underlie our
proposal. First, we describe the Dip-test in detail as it is an essential
part of our procedure. Then, we briefly discuss dimensionality
reduction techniques and basic Deep Clustering algorithms.

TheDip-test:TheDip-test [14] of unimodality is a statistical test
that measures how multimodal a given one-dimensional data set is.
It returns a Dip-value dip ∈ (0, 0.25], which indicates unimodality
if it is close to zero. Since the Dip-test is parameter-free, we do
not have to state any underlying distribution function. Therefore,
dip ≈ 0 regardless of whether we execute the Dip-test on samples
from a single Gaussian, Laplacian, uniform, or any other unimodal
distribution. On the other hand, 0 ≪ dip ≤ 0.25 if we have samples
from distributions with multiple distinctive modes. Hartigan and
Hartigan showed how to efficiently calculate the Dip-value on a
sorted data set of size 𝑁 with a complexity of 𝑂 (𝑁) [14]. For this
purpose, a modal interval is used, which indicates the steepest
slope in the empirical cumulative distribution function (ECDF).
These characteristics make the Dip-test very interesting for the
Data Science community, which is why it has already been used
for various purposes.

Since no distribution of the data has to be assumed, it is particu-
larly suitable for unsupervised learning. One of the first clustering
algorithms using the Dip-test is Dip-means [19] which aims at iden-
tifying the number of clusters. Here, the Dip-test is calculated on
the distances between all objects within a cluster. A new cluster is
added if the distances do not show a unimodal distribution. Pro-
jected Dip-means [2] pursues the same objective but projects the
data onto projection axes and applies the Dip-test on these projected
one-dimensional values. SkinnyDip [28] recursively analyzes the
features of a data set by interpreting each modal interval returned
by the Dip-test as a cluster. This idea is continued by StrDip [27] to
cluster streaming data. Nr-Dipmeans [30] attempts to determine
the number of clusters in a non-redundant clustering setting. There-
fore, each cluster is split into two, and the objects are projected
onto the line connecting the two new centers. The initial cluster is
kept if the Dip-test indicates unimodality; otherwise, the procedure
continues with the two new clusters. The first clustering algorithm
that combines the Dip-test with Deep Learning is DipDECK [25].
Here, clustering is done in the embedded space of an AE. Initially,
the technique heavily overestimates the number of clusters. If the
data points within two microclusters show high unimodality, they
are merged, and the embedding can be further updated.

DipTransformation [34] shows that the Dip-test can also be used
for data preprocessing. It uses the Dip-test to transform and scale a
data set so that its most important features are highlighted. [28] and
[33] go one step further. They take advantage of the fact that we can
deduce the gradient of the Dip-value with respect to the projection
axis, as shown in [22]. This allows them to identify cluster-friendly
subspaces by picking out those projections which yield the highest
multimodality. The differentiability is a convenient feature of the
Dip-test. We want to extend this idea by additionally using the
gradient with respect to the data.

Dimensionality reduction techniques:Methods that reduce
the dimensionality of a data set fall into two main categories: unsu-
pervised and supervised.

Principal Component Analysis (PCA) [10] is probably the best-
known dimensionality reduction technique and is a common pre-
processing step when analyzing a data set. It rotates the features
space such that only the components with the highest variances
remain. Independent Component Analysis (ICA) [18] is not a di-
mensionality reduction technique per definition. However, it also

847

The DipEncoder: Enforcing Multimodality in Autoencoders KDD ’22, August 14–18, 2022, Washington, DC, USA

finds a lower-dimensional basis of the data by searching for statis-
tically independent components. t-Distributed Stochastic Neighbor
Embedding (t-SNE) [35] tries to preserve local structures in high-
dimensional data sets while reducing the dimensionality. Therefore,
it converts distances in the original feature space into probabilities
of whether an object would pick another as a neighbor. Uniform
Manifold Approximation and Projection (UMAP) [31] pursues a
similar goal. However, it uses a more extensive mathematical basis
by leveraging Riemannian geometry. Another way to perform a
dimensional reduction is to use an autoencoder (AE) [1]. This unsu-
pervised NN consists of two parts, an encoder enc(·) that transforms
the input to the embedding and a decoder dec(·) that tries to restore
the data from the embedding to its original state. This basic idea
is also presented in Figure 1, where we have a two-dimensional
embedding. The AE is usually trained by a batch-wise optimization
of the reconstruction loss L𝑟𝑒𝑐 .

L𝑟𝑒𝑐 (B) = 1
|B|

∑︁
𝑥 ∈B

| |𝑥 − dec(enc(𝑥)) | |22, (1)

where B ⊆ 𝑋 is one batch of the data set𝑋 ⊆ R𝑑 and | | · | |22 denotes
the squared Euclidean distance.

Until now, we only discussed unsupervised techniques. However,
some methods use known cluster labels to achieve a lower dimen-
sionality. One such supervised approach is the Linear Discriminant
Analysis (LDA) [9]. LDA identifies a subspace by minimizing the
intra-cluster variance while maximizing the inter-cluster variance.
Another approach is Partial Least Squares (PLS) [36]. This method
searches for structures in the data set that maximize the covariance
with the labels.

We present the DipEncoder, which also falls into the group of
supervised dimensionality reduction techniques since we want to
improve the embedding of an AE by arranging objects of a common
group unimodally and those of different groups multimodally.

Many of the mentioned methods have already been successfully
combined with data-mining approaches to, for instance, create
subspace or non-redundant clustering algorithms. Examples are
Orth [5] (using PCA), LDA-k-means [6] (using LDA) or generally
DC algorithms (using AEs).

Deep Clustering: Since our final product is a Deep Clustering
(DC) algorithm, we want to briefly discuss corresponding proce-
dures. One of the first methods that combine a simple AE with
a centroid-based clustering objective is DEC [38] and its succes-
sor IDEC [13]. They optimize their network by minimizing the
Kullback-Leibler divergence between soft cluster labels and an aux-
iliary target distribution. While DEC uses the reconstruction loss
of the AE only for pretraining, IDEC integrates it into the cost func-
tion of the primary clustering method. DCN [39] is more oriented
towards the original k-means algorithm and therefore uses hard
cluster labels. The hierarchical clustering algorithm DeepECT [29]
provides multiple levels of labels, which can then be analyzed at
a later stage. Other methods introduce specific AE architectures
to better handle certain types of data. For example VaDE [17] uses
a Variational Autoencoder (VAE) [21] to solve a probabilistic clus-
tering objective. DEKM [12], JULE [40] and DEPICT [7] all use
CNNs, which greatly increases their processing power on image
data. ClusterGAN [32] applies yet another clustering strategy by
employing Generative Adversarial Networks (GANs) [11].

Figure 2: The figure shows the calculation of the Dip-value
using an exemplary data set with four modes. [Top] His-
togram of the data set. The colors indicate the underlying
creation process. [Bottom] The blue line shows the ECDF
of the samples. Between 𝑧𝑙 and 𝑧𝑢 , the green line indicates
the region of the maximum slope within the ECDF and thus
the main mode(s) of the data set. There must be a convex
distribution to the left of 𝑧𝑙 and a concave distribution to the
right of 𝑧𝑢 . The vertical height of the modal triangle (in red),
formed by (𝑧𝑚1 ,

𝑚1
𝑁
), (𝑧𝑚2 ,

𝑚2
𝑁
) and (𝑧𝑚3 ,

𝑚3
𝑁
), shows the maxi-

mum deviation between the ECDF and a convex distribution
and ultimately specifies the Dip-value.

We want to avoid such architecture-based extensions to show
that our good results are based only on our core idea. However,
extensions like convolutional layers could still be added to later
evolutions of our technique.

3 THE DIPENCODER
The DipEncoder is an extension of an ordinary AE, which is able
to process the gradients of the Dip-value. Therefore, we would like
to discuss the mathematical foundation of those gradients first. An
overview of the used symbols can be found in appendix A.

Typically, the objects within a data set are fixed, which is why so
far, only the gradient with respect to the projection axis was used
(e.g., in [22, 28, 33]). Since we are working within the embedding
of an AE, we can also process the gradient regarding the data. To
the best of our knowledge, we are the first who use the gradient of
the Dip-value in a Deep Learning environment and generally the
first who use the gradient with respect to the data.

For the computation of the Dip-value, we need to transform
the embedded data set 𝑍 = enc(𝑋) into a one-dimensional space.
Therefore, we assign distinct projection axes to each pair of clusters.
These axes are stored in a separate shallow NN we call DipModule.
It consists of 𝑘 (𝑘 − 1)/2 ×𝑚 neurons, where 𝑘 is the number of
clusters and𝑚 the dimensionality of the embedding. We can now
project the embedded samples of clusters 𝑎, denoted by 𝑋𝑎 ⊆ 𝑋 ,
and b, denoted by 𝑋𝑏 ⊆ 𝑋 , onto their corresponding axis 𝑝𝑎,𝑏 . We

848

KDD ’22, August 14–18, 2022, Washington, DC, USA Collin Leiber et al.

define 𝑋𝑎,𝑏 = 𝑋𝑎 ∪ 𝑋𝑏 as the set of all objects assigned to either
cluster 𝑎 or cluster 𝑏 and consequently 𝑍𝑎,𝑏 = enc(𝑋𝑎 ∪ 𝑋𝑏). Then
the projection is performed as 𝑝𝑇

𝑎,𝑏
· 𝑧, where 𝑧 ∈ 𝑍𝑎,𝑏 . Afterwards,

we sort our projected embedded data to receive 𝑍𝑎,𝑏 ⊆ R1.
To calculate the Dip-value, as described in [14], we interpret𝑍𝑎,𝑏

as a probability distribution function and generate the correspond-
ing empirical cumulative representation (ECDF). Next, we start to it-
erate over the ECDF to find the modal interval [𝑧𝑙 , 𝑧𝑢], 𝑧𝑙 , 𝑧𝑢 ∈ 𝑍𝑎,𝑏 ,
as well as the modal triangle Δ = ((𝑧𝑚1 ,

𝑚1
𝑁
), (𝑧𝑚2 ,

𝑚2
𝑁
), (𝑧𝑚3 ,

𝑚3
𝑁
)),

where𝑚1 ≤ 𝑚2 ≤ 𝑚3 are the indices of 𝑧𝑚1 , 𝑧𝑚2 , 𝑧𝑚3 ∈ 𝑍𝑎,𝑏 respec-
tively, i.e. the indices when considering the sorted projected data.
The modal interval is the area within which the maximum slope of
the ECDF lies. This corresponds to the most significant mode(s) of
the underlying distribution. While the modal interval iteratively
shrinks, the modal triangle introduced by [22] is the triangle formed
by (𝑧𝑚1 ,

𝑚1
𝑁
), (𝑧𝑚2 ,

𝑚2
𝑁
) and (𝑧𝑚3 ,

𝑚3
𝑁
) that, given the modal inter-

val, has the largest distance between the ECDF and a piecewise
linear function that satisfies the conditions of unimodality (convex
until 𝑧𝑙 and concave after 𝑧𝑢). A visualization of this process is
given in Figure 2. The modal triangle fulfills height(Δ) = 2 · dip
(the details can be found in [22]). Therefore, the Dip-value can be
calculated as follows:

dip(𝑍𝑎,𝑏) =
1
2𝑁

(����
C𝐴︷ ︸︸ ︷

(𝑚3 −𝑚1) (𝑧𝑚2 − 𝑧𝑚1)
𝑧𝑚3 − 𝑧𝑚1

+𝑚1 −𝑚2

���� + 1
)

Using this formulation we can deduce the gradient regarding each
feature 𝑖 of the projection axis [22].

𝜕dip(𝑍𝑎,𝑏)
𝜕𝑝𝑎,𝑏 [𝑖]

= 𝑐

(
𝑧𝑚2 [𝑖] − 𝑧𝑚1 [𝑖]

𝑧𝑚3 − 𝑧𝑚1

+
(𝑧𝑚1 − 𝑧𝑚2) (𝑧𝑚3 [𝑖] − 𝑧𝑚1 [𝑖])

(𝑧𝑚3 − 𝑧𝑚1)2

)
,

(2)

where 𝑐 =
𝑚3−𝑚1
2𝑁 if 𝐴 > 0, else 𝑐 = −(𝑚3−𝑚1

2𝑁). Here, 𝑧𝑚 𝑗
is the

(unprojected)𝑚-dimensional embedded data point corresponding
to 𝑧𝑚 𝑗

, i.e. 𝑝𝑇
𝑎,𝑏

· 𝑧𝑚 𝑗
= 𝑧𝑚 𝑗

, and [𝑖] indicates its 𝑖-th coordinate.
Furthermore, we can calculate the gradient regarding each feature
𝑖 of the samples.

𝜕dip(𝑍𝑎,𝑏)
𝜕𝑧 [𝑖] =

𝑝𝑎,𝑏 [𝑖]𝑐
𝑧𝑚2−𝑧𝑚3

(𝑧𝑚3−𝑧𝑚1)2
if 𝑧 = 𝑧𝑚1 ,

𝑝𝑎,𝑏 [𝑖]𝑐 1
𝑧𝑚3−𝑧𝑚1

if 𝑧 = 𝑧𝑚2 ,

𝑝𝑎,𝑏 [𝑖]𝑐
𝑧𝑚1−𝑧𝑚2

(𝑧𝑚3−𝑧𝑚1)2
if 𝑧 = 𝑧𝑚3 ,

0 else,

(3)

where the definitions are the same as above. The derivations of
these equations can be found in appendix D.

In order to clearly separate the clusters, we need to maximize
the modality with respect to these samples. In mathematical terms
this equals max(dip(𝑍𝑎,𝑏)) or, since we use gradient descent, we
minimize the negative value, i.e. min(−dip(𝑍𝑎,𝑏)).

However, we must be careful that high modality is not achieved
by tearing a cluster apart. Therefore, we need another term support-
ing a unimodal structure within the clusters on this projection axis.
This is given by min(dip(𝑍

𝑎, �𝑏
) + dip(𝑍

�𝑎,𝑏
)), where 𝑍

𝑎, �𝑏
⊆ 𝑍𝑎,𝑏

only contains the samples of cluster 𝑎. 𝑍
�𝑎,𝑏

is defined analogously.
We consider these two optimizations to be equally important, which
is why we multiply the unimodal constraint by 1

2 .
Applying these terms to the batch-wise optimization of the

DipEncoder yields the loss terms L𝑢𝑛𝑖 and L𝑚𝑢𝑙𝑡𝑖 .

L𝑢𝑛𝑖 (B, 𝑎, 𝑏) =
1
2

(
dip(𝑍 B

𝑎, �𝑏
) + dip(𝑍 B

�𝑎,𝑏
)
)
,

L𝑚𝑢𝑙𝑡𝑖 (B, 𝑎, 𝑏) = − dip(𝑍 B
𝑎,𝑏),

where 𝑍 B
𝑎,𝑏 = sort{𝑝𝑇

𝑎,𝑏
· 𝑧 |𝑧 ∈ enc(𝑋𝑎,𝑏 ∩ B)}. 𝑍 B

𝑎, �𝑏
and 𝑍

B
�𝑎,𝑏

are
defined analogously. Combined we get the dip loss L𝑑𝑖𝑝 .

L𝑑𝑖𝑝 (B) = 2
𝑘 (𝑘 − 1)

(𝑘−1)∑︁
𝑎=1

𝑘∑︁
𝑏=𝑎+1

L𝑢𝑛𝑖 (B, 𝑎, 𝑏) + L𝑚𝑢𝑙𝑡𝑖 (B, 𝑎, 𝑏)

With the previously defined gradients (Eq. 2 and 3), we can now
optimize the DipEncoder by backpropagation based on these Dip-
values. Here the gradient from the projection axes feeds into the
DipModule, and the gradient with respect to the data is used to
update the neurons of the AE.

One problem with the current loss function is that it does not
generalize very well since the embedding is optimized based only
on the modal triangle. That is, we only get a non-zero gradient for
three samples per execution of the Dip-test. For this reason, we also
include the reconstruction loss (Eq. 1) into our final loss term.

L𝑓 𝑖𝑛𝑎𝑙 (B) = L𝑑𝑖𝑝 (B) + _L𝑟𝑒𝑐 (B) (4)

We would like the reconstruction loss to be weighted similarly
to L𝑢𝑛𝑖 and L𝑚𝑢𝑙𝑡𝑖 . Due to the nature of the Dip-value these are
limited to (0, 0.25] and [−0.25, 0) respectively. To constrain L𝑟𝑒𝑐 ,
we need to define a hypothetical maximum value. For this we
assume that the AE initially, i.e. before the backpropagation is
executed for the first time, is in its worst state. We therefore set
_ = 1

4L𝑟𝑒𝑐 (B𝑖𝑛𝑖𝑡) , where B𝑖𝑛𝑖𝑡 is the first batch of data. This makes
0 ≤ _L𝑟𝑒𝑐 (B) ≤ 0.25 approximately valid for all B.

To speed up the separation of the individual clusters, we multiply
the gradients originating from the Dip-tests within L𝑢𝑛𝑖 by 𝑑𝑖𝑝 ,
where 𝑑𝑖𝑝 equals the corresponding Dip-value, and the gradient
originating from the Dip-test within L𝑚𝑢𝑙𝑡𝑖 by (0.25 − 𝑑𝑖𝑝). This
strategy reduces, for example, the weighting of L𝑢𝑛𝑖 concerning
clusters that already indicate a unimodal structure. Thus, we shift
the focus of the optimization towards structures that do not yet
show the desired characteristics.

Note that the Dip-test only gives meaningful values if a certain
amount of samples is present. Since our samples are divided into
several clusters, we need larger batches with more clusters present.
Based on an experimental analysis (appendix B), we recommend a
minimum batch size of 25 · 𝑘 , where 𝑘 is the number of clusters.

As already shown in [25], the Dip-test struggles to notice a
mode as such if it is significantly smaller than another one. Thus, a
cluster containing many points together with a cluster containing
significantly fewer points is still considered unimodal. This, in
particular, weakens the significance of the modal triangle in L𝑚𝑢𝑙𝑡𝑖

and thus the usability of the gradient. To avoid this, [25] suggests to
use only the 𝑆 |𝑋𝑏 | samples from cluster 𝑎 that are closest to cluster
𝑏 if |𝑋𝑎 | > 𝑆 |𝑋𝑏 |. Since we want to preserve the general structure of

849

The DipEncoder: Enforcing Multimodality in Autoencoders KDD ’22, August 14–18, 2022, Washington, DC, USA

both clusters as much as possible, we utilize a variation of this idea
by randomly sampling 3|𝑍 B

�𝑎,𝑏
| objects from 𝑍

B
𝑎, �𝑏

if |𝑍 B
𝑎, �𝑏

| > 3|𝑍 B
�𝑎,𝑏

|.
Figure 3 shows an execution of the DipEncoder (3(a) - 3(d)) on

the Optdigits data set using the ground truth labels. We see that the
clusters within the embedding of the DipEncoder adopt a unimodal
structure that is clearly separated from other clusters. Compared
to a regular AE (3(e) - 3(h)), the structures stand out much better.

One advantage of the DipEncoder is that we do not have to
assume a distribution in advance. We only want to achieve a uni-
modal structure within a cluster and a multimodal structure be-
tween clusters. This is a perfect starting point for unsupervised
learning algorithms since the inter- and intra-cluster dependencies
are often unknown a priori.

3.1 Update the cluster labels
We use the components of the DipEncoder to develop a parameter-
free method to update the cluster labels. For this, we utilize the
property that the Dip-test does not only return the Dip-value and
the modal triangle but also the modal interval [𝑧𝑙 , 𝑧𝑢]. This interval
shows the area of the steepest slope in the ECDF and thus describes
the most significant mode(s) within our samples. We use the inter-
vals returned by L𝑢𝑛𝑖 to determine the areas of influence of the two
clusters on their corresponding projection axis. This information
can then be applied to define a threshold that indicates whether
an object should be assigned to the left or the right cluster. The
threshold 𝑇 is simply the center point between the upper limit 𝑧𝑢,𝐿
of the left cluster 𝐿 and the lower limit 𝑧𝑙,𝑅 of the right cluster 𝑅.

𝑇 = (𝑧𝑢,𝐿 + 𝑧𝑙,𝑅)/2 (5)

An example of this process can be seen in Figure 4. Initially, some
objects to the right of 𝑇 still belong to the yellow cluster. However,
our procedure indicates that these should rather match the purple
cluster. The same applies analogously to objects from the purple
cluster that lie to the left of 𝑇 .

If we want to update the cluster labels, we project each sample
onto each projection axis 𝑝𝑎,𝑏 and determine whether it belongs
rather to the left or the right cluster. In the end, each object is as-
signed to the cluster with which it has most frequently matched.
Usually, one cluster always matches, making the assignment un-
ambiguous. If a tie does occur, the sample is assigned to the cluster
with the lower ID.

The described method has one major shortcoming. Since the
modal interval specifies the area of the steepest slope in the ECDF
while satisfying the unimodality constraints (first convex, then con-
cave), this range turns out to be very small in the case of an already
unimodal distribution. This behavior is reasonable by definition,
but it does not fully reflect our human understanding of the most
significant mode. Therefore, we apply a strategy introduced in the
implementation of [28]. By mirroring the data set, we can assume
quite reliably that we obtain a multimodal structure. It follows that
the resulting modal interval has a higher significance with respect
to our application. Since we do not change the structure of the sam-
ples, we can transfer the mirrored interval to the non-mirrored case.
A visual representation of this strategy is presented in Figure 5. We
can see that the modal interval of the mirrored samples captures
our natural perception of the mode much better.

Algorithm 1: Pseudocode of the DipEncoder
Input: data set 𝑋 , number of clusters 𝑘 , number of epochs 𝐸
Output: 𝑙𝑎𝑏𝑒𝑙𝑠

1 // Pretrain AE; save the reconstruction loss of B𝑖𝑛𝑖𝑡 as _
2 (𝐴𝐸, _) = pretrain autoencoder on 𝑋 using L𝑟𝑒𝑐 (Eq. 1)
3 // Get initial labels and projection axes
4 𝑙𝑎𝑏𝑒𝑙𝑠 = k-means(𝐴𝐸.encode(𝑋), 𝑘)
5 𝐷𝑀 = DipModule(𝑋,𝐴𝐸, 𝑙𝑎𝑏𝑒𝑙𝑠) (Eq. 6)
6 for 𝑒𝑝𝑜𝑐ℎ = 0; 𝑒𝑝𝑜𝑐ℎ ≤ 𝐸; 𝑒𝑝𝑜𝑐ℎ += 1 do
7 // Update 𝑙𝑎𝑏𝑒𝑙𝑠 as described in Section 3.1
8 for 𝑥 ∈ 𝐴𝐸.encode(𝑋) do
9 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑀𝑎𝑡𝑐ℎ𝑒𝑠 = [0, ..., 0] ∈ R𝑘

10 for 𝑎 = 1; 𝑎 ≤ 𝑘 − 1; 𝑎 += 1 do
11 for 𝑏 = 𝑎 + 1; 𝑏 ≤ 𝑘 ; 𝑏 += 1 do
12 𝑝𝑎,𝑏 = 𝐷𝑀.getProjectionAxis(𝑎, 𝑏)
13 𝑍

𝑎, �𝑏
= sort{𝑝𝑇

𝑎,𝑏
· 𝑧 |𝑧 ∈ 𝐴𝐸.encode(𝑋𝑎)}

14 𝑍
�𝑎,𝑏

= sort{𝑝𝑇
𝑎,𝑏

· 𝑧 |𝑧 ∈ 𝐴𝐸.encode(𝑋𝑏)}
15 [𝑧𝑙,𝑎, 𝑧𝑢,𝑎], [𝑧𝑙,𝑏 , 𝑧𝑢,𝑏] = dip(𝑍

𝑎, �𝑏
), dip(𝑍

�𝑎,𝑏
)

16 𝑐𝐿, 𝑐𝑅 = ids of left and right cluster on 𝑝𝑎,𝑏

17 𝑇 = center between the clusters (Eq. 5)
18 if (𝑝𝑇

𝑎,𝑏
· 𝑥) < 𝑇 then

19 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑀𝑎𝑡𝑐ℎ𝑒𝑠 [𝑐𝐿] += 1
20 else
21 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑀𝑎𝑡𝑐ℎ𝑒𝑠 [𝑐𝑅] += 1

22 set label of 𝑥 to argmax(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑀𝑎𝑡𝑐ℎ𝑒𝑠)
23 if 𝑒𝑝𝑜𝑐ℎ == 𝐸 then
24 break
25 // Train the DipEncoder
26 for B in 𝑋 do
27 L𝑓 𝑖𝑛𝑎𝑙 = L𝑑𝑖𝑝 (B) + _L𝑟𝑒𝑐 (B) (Eq. 4)
28 optimize 𝐴𝐸 and 𝐷𝑀 using L𝑓 𝑖𝑛𝑎𝑙

29 return 𝑙𝑎𝑏𝑒𝑙𝑠

3.2 Clustering algorithm
Next, we utilize the concepts described above to develop a novel
clustering algorithm. A pseudocode version of our approach is
given in Algorithm 1.

Since the DipEncoder calculates the Dip-values based on known
labels, initial clusters are required first. For this, we pretrain an AE
using the reconstruction loss and then run an arbitrary clustering
algorithm in the resulting embedding. For simplicity, we use k-
means for this. We want to emphasize that other algorithms are
easily applicable since we do not make any assumptions about
distributions and only analyze modalities. The requirement of an
initial clustering is often found in DC (for example in [7, 13, 17, 25,
38, 39]). Therefore, these methods can also be seen as AE-based
cluster refinement methods.

Once we have initial cluster labels, we can create the DipModule.
To obtain initial projection axes 𝑝𝑎,𝑏 , we calculate the distances
between each combination of cluster centers within the embedding

850

KDD ’22, August 14–18, 2022, Washington, DC, USA Collin Leiber et al.

(a) DipEncoder after 1 epoch. (b) DipEncoder after 10 epochs. (c) DipEncoder after 50 epochs. (d) DipEncoder after 100 epochs.

(e) AE after 1 epoch. (f) AE after 10 epochs. (g) AE after 50 epochs. (h) AE after 100 epochs.

Figure 3: The images show the embeddings (𝑚 = 10) of the DipEncoder (3(a) - 3(d)) and a regular AE (3(e) - 3(h)) for the Optdigits
data set after 1, 10, 50 and 100 epochs. The colors indicate the clusters of the samples. To create a three-dimensional plot, we
use the first three components of a PCA.

Figure 4: Illustration of our label update method using two
clusters projected onto their corresponding projection axis.
A threshold 𝑇 is determined by calculating the center point
between 𝑧𝑢 of the yellow cluster (left) and 𝑧𝑙 of the purple
cluster (right). For each object, the relative position with
respect to 𝑇 is used to check which cluster fits better.

of the pretrained AE.

𝑝𝑎,𝑏 =

∑
𝑥 ∈𝑋𝑎

enc(𝑥)
|𝑋𝑎 |

−
∑
𝑥 ∈𝑋𝑏

enc(𝑥)
|𝑋𝑏 |

(6)

Now we start the iterative optimization of our clustering. First,
for each cluster combinationwe compute the Dip-valuewith respect
to 𝑝𝑎,𝑏 and update the labels as described in Section 3.1. Next, we
use the updated labels to calculate the loss function L𝑓 𝑖𝑛𝑎𝑙 (Eq. 4)
in a batch-wise fashion and thus optimize the AE and DipModule.
This procedure repeats for a predefined number of iterations.

4 EXPERIMENTS
To verify the quality of our approach, we conduct experiments on
a variety of real-world data sets. Therefore, we compare our results
to those of competitor algorithms.

(a) Non-mirrored samples. (b) Mirrored samples.

Figure 5: The images show the modal interval of an example
distribution. [Top] Histogram of the data set. [Bottom] The
corresponding ECDF. The modal interval is represented by a
red line. 5(a) shows the original samples, while 5(b) shows
the samples mirrored to the left.

Data sets: First, we would like to briefly describe the used data
sets. The general information (𝑁 , 𝑑 , 𝑘) can be found in the header
of Table 1. To present the wide application field of our method, we
use data sets from different domains. Optdigits [8], USPS [16] and
MNIST [24] are image data sets containing the digits 0-9. The image
data set Fashion-MNIST (F-MNIST) [37] shows items from the
zalando online store and Kuzushiji-MNIST (K-MNIST) [3] consists
of various Kanji characters. Human Activity Recognition (HAR) [8],
Pendigits [8] and Letterrecognition (Letters) [8] are numerical data
sets representing sensor records of human activity, coordinates of
handwritten digits and letter stimuli, respectively. Furthermore, we

851

The DipEncoder: Enforcing Multimodality in Autoencoders KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 1: NMI results of the DipEncoder against the comparison algorithms on various data sets. Each experiment is repeated
ten times, and the average result ± standard deviation as well as the maximum result (in brackets) are stated in %. The best
average and maximum result per data set are underlined, the runner-up is dotted.

Method Optdigits (𝑘 = 10) USPS (𝑘 = 10) HAR (𝑘 = 6) Pendigits (𝑘 = 10) Reuters10k (𝑘 = 4)
(𝑁 = 5620, 𝑑 = 64) (𝑁 = 9298, 𝑑 = 256) (𝑁 = 10299, 𝑑 = 561) (𝑁 = 10992, 𝑑 = 16) (𝑁 = 10000, 𝑑 = 2000)

DipEncoder 88.6 ± 3.0 (92.0) 81.9 ± 0.8 (83.6) 73.5 ± 6.9 (82.4) 75.2. ± 2.1 (78.2) 36.8 ± 4.2 (41.9)
AE+k-means 80.1 ± 2.4 (83.8) 69.6 ± 0.9 (71.2) 67.5 ± 4.2 (73.2) 70.0 ± 0.8 (72.2) 37.2 ± 6.3 (47.3)
DEC 88.5. ± 2.5 (91.9.) 80.7. ± 0.6 (81.4.) 66.3 ± 4.8 (76.8) 76.9 ± 1.1 (77.9.) 37.9. ± 7.1 (51.6.)
IDEC 80.4 ± 2.4 (84.0) 69.3 ± 1.0 (70.9) 69.9 ± 2.9 (74.1) 69.8 ± 1.3 (72.2) 39.1 ± 6.7 (51.9)
DCN 84.8 ± 2.3 (84.8) 74.6 ± 1.3 (76.1) 73.4. ± 4.8 (80.9.) 73.5 ± 0.5 (74.4) 35.1 ± 7.1 (45.4)
DipDECK 83.5 ± 2.3 (86.7) 68.5 ± 1.3 (70.5) 70.8 ± 1.3 (72.1) 72.8 ± 1.2 (74.7) 15.6 ± 18.1 (45.8)

Method 20Newsgroups (𝑘 = 20) Letters (𝑘 = 26) MNIST (𝑘 = 10) F-MNIST (𝑘 = 10) K-MNIST (𝑘 = 10)
(𝑁 = 18846, 𝑑 = 2000) (𝑁 = 20000, 𝑑 = 16) (𝑁 = 70000, 𝑑 = 784) (𝑁 = 70000, 𝑑 = 784) (𝑁 = 70000, 𝑑 = 784)

DipEncoder 30.8. ± 0.6 (31.6.) 47.1 ± 0.9 (48.2.) 85.8 ± 1.6 (87.8) 60.6 ± 2.2 (63.5) 52.2. ± 3.2 (57.0.)
AE+k-means 31.2 ± 0.8 (32.4) 42.3 ± 0.9 (43.4) 74.4 ± 1.5 (77.0) 54.2 ± 0.5 (55.1) 46.3 ± 2.4 (49.7)
DEC 15.8 ± 1.0 (17.1) 46.0. ± 2.0 (48.0) 85.2. ± 1.2 (86.6.) 59.7. ± 1.4 (62.5.) 54.2 ± 2.1 (58.0)
IDEC 28.1 ± 1.3 (30.2) 45.1 ± 1.4 (47.6) 75.3 ± 1.2 (77.8) 54.3 ± 0.7 (55.3) 46.7 ± 1.8 (49.1)
DCN 28.6 ± 1.5 (30.7) 43.7 ± 2.4 (48.4) 82.0 ± 1.7 (84.2) 56.0 ± 0.9 (58.3) 48.2 ± 2.0 (51.7)
DipDECK 00.1 ± 0.0 (00.1) 34.5 ± 3.6 (38.2) 75.8 ± 2.0 (79.4) 53.9 ± 2.9 (57.2) 38.7 ± 4.1 (43.0)

consider the document data sets Reuters [26] and 20Newsgroups1.
For 20Newsgroups we convert the documents to vectors with TF-
IDF, using only the most common 2000 features. We preprocess
Reuters as described in [38], using a subset of 10000 objects, called
Reuters10k.

Apart from TF-IDF on the document data sets, we do not use
other preprocessing steps. Since all DC algorithms are based on an
AE, they should be able to learn relevant transformations on their
own.

AE setup:We choose the same structure of the AE as presented
in [38]. This corresponds to the AE dimensions 𝑑 − 500 − 500 −
2000 − 𝑚 − 2000 − 500 − 500 − 𝑑 , where 𝑚 = 10, which have
already been used by other DC algorithms, like [13] or [17]. We
would like to have a starting situation as similar as possible in
our experiments. Therefore, ten AEs are pretrained for each data
set, forming the initial setting for all DC algorithms. These AEs
are trained for 100 epochs using the ADAM [20] optimizer with a
constant learning rate of 0.001 and a batch size of 256. The actual
clustering optimization then follows.

During clustering, the DipEncoder uses a learning rate of 0.0001
with a batch size of 25 · 𝑘 (as described in Section 3). The other DC
algorithms use a learning rate of 0.0001 with a batch size of 256.
All optimizations were run for another 100 epochs.

The DipEncoder was implemented using PyTorch2 and can be
downloaded at: https://dmm.dbs.ifi.lmu.de/downloads.

Comparison algorithms:As comparison algorithms, we choose
those comparable by architecture since only these can load the pre-
trained AEs naturally. These algorithms are DEC, IDEC, DCN and
DipDECK. In addition, we execute k-means on the pretrained AEs
(AE+k-means). All parameters are set as described in the respective
papers. The only exception is DipDECK, where we set 𝑚 = 10
instead of 5. By comparing to the AE+k-means results, one can see
1http://qwone.com/~jason/20Newsgroups/
2https://pytorch.org/

how much the results have improved since all the procedures start
from the same initial situation. An exception is DipDECk, since
there the initial k-means execution is run with a highly overesti-
mated number of clusters (𝑘𝑖𝑛𝑖𝑡 = 35).

Metrics: We evaluate our approaches using the normalized mu-
tual information (NMI) and the adjusted rand index (ARI). Both are
established metrics in clustering that can take values between 0
and 1, where 1 indicates a perfect result. We report all results in %.

Evaluation: The NMI results of the experiments can be found
in Table 1 (ARI results in appendix C). We can see that our method
performs best in 12 out of 20 experiments (mean and max). In
addition, we take second place six times. We generally show good
results on both image and numerical data sets. Only concerning
text data do the comparison algorithms perform slightly better. In
this case, the other Dip-based clustering method, DipDECK, also
seems to have significant problems. For example, it identifies only 1
or 2 clusters for 20Newsgroups, which explains the inferior results.
From this, it can be concluded that text data sets, possibly due to
the sparse structure, show less multimodal features.

Figure 6 illustrates the results of the compared DC algorithms on
MNIST. It is easy to see that the procedures operate with different
degrees of rigor as far as the shifting of data is concerned. DEC
offers the greatest flexibility since it does not apply any regular-
ization term such as the reconstruction loss. Therefore, one can
clearly notice the compressed clusters as identified by DEC. The
DipEncoder seems to be the second most flexible algorithm in this
regard. AE+k-means, on the other hand, is by definition not able
to separate clusters from each other. IDEC and DipDECK limit the
ability to push clusters apart by integrating the reconstruction loss
into the cost function using a fixed weighting factor. This factor
equals 10 compared to the cluster loss for IDEC and 1 for DipDECK.

We want to elaborate on these differences a bit more. When
we compare our results from Table 1 with the results from other
publications, some comparison methods seem to have problems

852

https://dmm.dbs.ifi.lmu.de/downloads
http://qwone.com/~jason/20Newsgroups/
https://pytorch.org/

KDD ’22, August 14–18, 2022, Washington, DC, USA Collin Leiber et al.

(a) DipEncoder. (b) AE+k-means. (c) DEC.

(d) IDEC. (e) DCN. (f) DipDECK.

Figure 6: Images of the final embeddings (𝑚 = 10) of MNIST as created by different Deep Clustering algorithms. The colors
depict the ground truth labels of the clusters. Features correspond to the first three components of a PCA.

Table 2: DC results on a standardized version of MNIST (zero
mean and unit variance). Each experiment is again repeated
ten times. Representation corresponds to Table 1.

Method
MNIST-Standardized (𝑘 = 10)

(𝑁 = 70000, 𝑑 = 784)

NMI ARI

DipEncoder 85.3 ± 2.3 (88.2) 78.7 ± 4.8 (85.0)
AE+k-means 70.9 ± 2.7 (74.8) 63.4 ± 4.6 (70.1)
DEC 82.1 ± 2.6 (85.5) 75.7 ± 5.4 (82.4)
IDEC 85.2. ± 2.0 (87.4.) 78.6. ± 4.4 (84.2.)
DCN 81.8 ± 2.4 (84.8) 73.9 ± 5.0 (81.2)
DipDECK 81.6 ± 2.3 (86.0) 67.8 ± 6.2 (80.7)

if the data sets have not been standardized (zero mean and unit
variance) as a preprocessing step. This concerns, in particular, those
methods that use a constant factor for weighting the reconstruc-
tion loss without considering the scaling of the original space. To
illustrate this, we conduct another experiment where we rerun all
algorithms on a standardized version of MNIST. The experiments
were performed as described above. The results are displayed in
Table 2. We can see that while the results from the DipEncoder
are almost unchanged, DipDECK and, in particular, IDEC perform
significantly better. This shows the benefit of weighting the recon-
struction loss depending on the scaling of the data set to achieve a
value similar to the clustering loss.

An additional experiment is performed to verify that our method
is able to generalize. Therefore, we apply the DipEncoder in a super-
vised manner. For this, we use the provided test-training partitions
of MNIST and use the known training labels to optimize the DipEn-
coder. Here, we can skip the pretraining of the AE and the initial
k-means execution. In this supervised version of the DipEncoder,
the update of the labels is executed only for the test data, after the
optimization of the training data is finished after 100 epochs. We

compare our results with those of a support vector machine (SVM)
[4] in combination with different dimension reduction techniques.
SVM is a machine learning algorithm that tries to place planes in
the feature space to separate the classes as well as possible. This
procedure compares well with our approach as described in Section
3.1. We run SVM in combination with PCA, as the probably most
used dimensionality reduction technique, LDA, as a frequently used
supervised method, and an AE, as it is the basis of our approach. All
methods reduce the number of features to 10 (using the implementa-
tions from scikit-learn3). Furthermore, we also perform SVM in the
embedding created by the DipEncoder. This gives us conclusions
about the quality of our label update method. To evaluate these
supervised experiments, we use the test data not used for the prior
optimization. We use the accuracy (ACC) as a common metric in
supervised learning to quantify the results. It ranges from 0 (poor)
to 1 (perfect). Additionally, the NMI values are given, so we are able
to compare with the previous clustering results. The supervised
results are shown in Table 3.

The analysis indicates that the DipEncoder generalizes very well,
assigning even previously unknown samples into the correct groups
in most cases. Since the supervised DipEncoder also produces bet-
ter results than SVM in combination with the embedding of the
DipEncoder, we can assume that our procedure to update the cluster
labels defines reasonable bounds for the clusters.

5 CONCLUSION
In this paper, we have shown for the first time how to calculate the
gradient of the Dip-value with respect to the data. To demonstrate
how this can practically be used, we developed the DipEncoder. It
is an extension of an autoencoder that uses the Dip-test to separate
samples from different clusters in an embedding. The only condition
is that samples of one cluster show a unimodal structure while the

3https://scikit-learn.org/stable/index.html

853

https://scikit-learn.org/stable/index.html

The DipEncoder: Enforcing Multimodality in Autoencoders KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 3: Results of a supervised version of the DipEncoder
against SVM in combination with different dimensionality
reduction techniques. Each experiment is again repeated ten
times. Representation corresponds to Table 1.

Method
MNIST (𝑘 = 10)

(𝑁train = 60000
𝑁test = 10000 , 𝑑 = 784)

ACC NMI

DipEncoder𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 94.2 ± 3.9 (97.2) 90.5 ± 2.3 (92.7)
DipEncoder+SVM 92.9. ± 4.3 (97.1.) 88.1. ± 3.1 (92.5.)
SVM 86.6 ± 1.1 (87.5) 74.5 ± 1.1 (75.5)
PCA+SVM 58.5 ± 4.9 (67.7) 45.9 ± 3.4 (53.9)
LDA+SVM 87.7 ± 0.0 (87.7) 74.7 ± 0.0 (74.7)
AE+SVM 89.1 ± 1.7 (91.2) 79.4 ± 2.0 (81.8)

combined samples of two clusters show a multimodal structure. A
previously defined distribution or other cluster properties are not
necessary.

Further, we developed a Dip-based method that can update the
labels within each iteration of the DipEncoder. The resulting deep
clustering algorithm shows state-of-the-art results on various real-
world data sets.

We think that the gradient of the Dip-value with respect to the
data allows for a series of new research opportunities. In particular,
we expect further research to integrate established Dip-based clus-
tering methods to determine the number of clusters automatically.

ACKNOWLEDGMENTS
This work has been partially funded by the German FederalMinistry
of Education and Research (BMBF) under Grant No. 01IS18036A.
The authors of this work take full responsibility for its content.

The present contribution is supported by the Helmholtz Asso-
ciation under the joint research school ’Munich School for Data
Science - MUDS’.

REFERENCES
[1] Dana H Ballard. 1987. Modular learning in neural networks.. In AAAI, Vol. 647.

279–284.
[2] Theofilos Chamalis and Aristidis Likas. 2018. The Projected Dip-means Clustering

Algorithm. In Proceedings of the 10th Hellenic Conference on Artificial Intelligence,
SETN. ACM, 14:1–14:7.

[3] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex Lamb, Kazuaki
Yamamoto, and David Ha. 2018. Deep Learning for Classical Japanese Literature.
CoRR (2018).

[4] Corinna Cortes and Vladimir Vapnik. 1995. Support-Vector Networks. Mach.
Learn. 20, 3 (1995), 273–297.

[5] Ying Cui, Xiaoli Z. Fern, and Jennifer G. Dy. 2007. Non-redundant Multi-view
Clustering via Orthogonalization. In ICDM. IEEE Computer Society, 133–142.

[6] Chris H. Q. Ding and Tao Li. 2007. Adaptive dimension reduction using discrimi-
nant analysis and K-means clustering. In ICML (ACM International Conference
Proceeding Series, Vol. 227). ACM, 521–528.

[7] Kamran Ghasedi Dizaji, Amirhossein Herandi, Cheng Deng, Weidong Cai, and
Heng Huang. 2017. Deep Clustering via Joint Convolutional Autoencoder Em-
bedding and Relative Entropy Minimization. In ICCV. IEEE Computer Society,
5747–5756.

[8] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. http:
//archive.ics.uci.edu/ml

[9] R. A. FISHER. 1938. THE STATISTICAL UTILIZATION OF MULTIPLE MEA-
SUREMENTS. Annals of Eugenics 8, 4 (1938), 376–386.

[10] Karl Pearson F.R.S. 1901. LIII. On lines and planes of closest fit to systems of
points in space. The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science 2, 11 (1901), 559–572.

[11] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. 2014. Generative
Adversarial Nets. In NIPS. 2672–2680.

[12] WengangGuo, Kaiyan Lin, andWei Ye. 2021. Deep Embedded K-Means Clustering.
In ICDM. IEEE, 686–694.

[13] Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. 2017. Improved Deep
Embedded Clustering with Local Structure Preservation. In IJCAI. ijcai.org, 1753–
1759.

[14] John A Hartigan and Pamela M Hartigan. 1985. The dip test of unimodality. The
annals of Statistics (1985), 70–84.

[15] PM Hartigan. 1985. Computation of the dip statistic to test for unimodality:
Algorithm as 217. Applied Statistics 34, 3 (1985), 320–5.

[16] Jonathan J. Hull. 1994. A Database for Handwritten Text Recognition Research.
IEEE Trans. Pattern Anal. Mach. Intell. 16, 5 (1994), 550–554.

[17] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou.
2017. Variational Deep Embedding: An Unsupervised and Generative Approach
to Clustering. In IJCAI. ijcai.org, 1965–1972.

[18] Christian Jutten and Jeanny Hérault. 1991. Blind separation of sources, part I:
An adaptive algorithm based on neuromimetic architecture. Signal Process. 24, 1
(1991), 1–10.

[19] Argyris Kalogeratos and Aristidis Likas. 2012. Dip-means: an incremental clus-
tering method for estimating the number of clusters. In NIPS. 2402–2410.

[20] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In ICLR.

[21] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In
ICLR.

[22] Andreas Krause and Volkmar Liebscher. 2005. Multimodal projection pursuit
using the dip statistic. (2005).

[23] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. 1989. Backpropagation applied
to handwritten zip code recognition. Neural computation 1, 4 (1989), 541–551.

[24] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[25] Collin Leiber, Lena G. M. Bauer, Benjamin Schelling, Christian Böhm, and Claudia
Plant. 2021. Dip-based Deep Embedded Clustering with k-Estimation. In ACM
SIGKDD. ACM, 903–913.

[26] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. 2004. RCV1: A New
Benchmark Collection for Text Categorization Research. J. Mach. Learn. Res. 5
(2004), 361–397.

[27] Yonghong Luo, Ying Zhang, Xiaoke Ding, Xiangrui Cai, Chunyao Song, and
Xiaojie Yuan. 2018. StrDip: A Fast Data Stream Clustering Algorithm Using the
Dip Test of Unimodality. In WISE (Lecture Notes in Computer Science, Vol. 11234).
Springer, 193–208.

[28] Samuel Maurus and Claudia Plant. 2016. Skinny-dip: Clustering in a Sea of Noise.
In ACM SIGKDD. ACM, 1055–1064.

[29] Dominik Mautz, Claudia Plant, and Christian Böhm. 2019. Deep Embedded
Cluster Tree. In ICDM. IEEE, 1258–1263.

[30] Dominik Mautz, Wei Ye, Claudia Plant, and Christian Böhm. 2020. Non-
Redundant Subspace Clusterings with Nr-Kmeans and Nr-DipMeans. ACM
Trans. Knowl. Discov. Data 14, 5 (2020), 55:1–55:24.

[31] Leland McInnes, John Healy, and James Melville. 2018. UMAP: Uniform Manifold
Approximation and Projection for Dimension Reduction.

[32] Sudipto Mukherjee, Himanshu Asnani, Eugene Lin, and Sreeram Kannan. 2019.
ClusterGAN: Latent Space Clustering in Generative Adversarial Networks. In
AAAI. AAAI Press, 4610–4617.

[33] Benjamin Schelling, Lena Greta Marie Bauer, Sahar Behzadi, and Claudia Plant.
2020. Utilizing Structure-Rich Features to Improve Clustering. In ECML PKDD
(Lecture Notes in Computer Science, Vol. 12457). Springer, 91–107.

[34] Benjamin Schelling and Claudia Plant. 2018. DipTransformation: Enhancing
the Structure of a Dataset and Thereby Improving Clustering. In ICDM. IEEE
Computer Society, 407–416.

[35] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using
t-SNE. Journal of Machine Learning Research 9 (2008), 2579–2605.

[36] Herman Wold. 1966. Estimation of principal components and related models by
iterative least squares. Multivariate analysis (1966), 391–420.

[37] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel
Image Dataset for Benchmarking Machine Learning Algorithms. CoRR (2017).

[38] Junyuan Xie, Ross B. Girshick, and Ali Farhadi. 2016. Unsupervised Deep Em-
bedding for Clustering Analysis. In ICML (JMLR Workshop and Conference Pro-
ceedings, Vol. 48). JMLR.org, 478–487.

[39] Bo Yang, Xiao Fu, Nicholas D. Sidiropoulos, and Mingyi Hong. 2017. Towards
K-means-friendly Spaces: Simultaneous Deep Learning and Clustering. In ICML
(Proceedings of Machine Learning Research, Vol. 70). PMLR, 3861–3870.

[40] Jianwei Yang, Devi Parikh, and Dhruv Batra. 2016. Joint Unsupervised Learning
of Deep Representations and Image Clusters. In CVPR. IEEE Computer Society,
5147–5156.

854

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

KDD ’22, August 14–18, 2022, Washington, DC, USA Collin Leiber et al.

APPENDIX
In the appendix, we give an overview of the used symbols, add ARI
results for our quantitative experiments, justify our chosen batch
size, and present the derivations of the Dip-value and its gradients.

A SYMBOLS
All symbols used in the paper are explained in Table 4.

Table 4: Overview of the used symbols.

Symbol Description
𝑁 ∈ N Size of the data set
𝑑 ∈ N Dimensionality of the original feature space
𝑚 ∈ N Dimensionality of the embedded space
𝑘 ∈ N Number of clusters
𝑇 ∈ R Threshold of the label update method

𝑋 ⊆ R𝑑 Set of all objects
B ⊆ 𝑋 One batch of data
𝑋𝑎 ⊆ 𝑋 Objects assigned to cluster 𝑎
𝑍 ⊆ R𝑚 Embedded set of all objects

⇒ 𝑍 = enc(𝑋)
𝑍𝑎,𝑏 ⊆ R𝑚 Embedded objects assigned to cluster 𝑎 or 𝑏

⇒ 𝑍𝑎,𝑏 = enc(𝑋𝑎 ∪ 𝑋𝑏)
𝑝𝑎,𝑏 ∈ R𝑚 Projection axis of cluster 𝑎 and 𝑏
𝑍𝑎,𝑏 ⊆ R1 Sorted version of 𝑍𝑎,𝑏 projected to 𝑝𝑎,𝑏

⇒ 𝑍𝑎,𝑏 = sort{𝑝𝑇
𝑎,𝑏

· 𝑧 |𝑧 ∈ 𝑍𝑎,𝑏 }
𝑍
𝑎, �𝑏

⊆ 𝑍𝑎,𝑏 Subset of 𝑍𝑎,𝑏 , ignoring samples from cluster 𝑏
𝑑𝑖𝑝 ∈ (0, 0.25] Dip-value (result of the Dip-test)

Δ The modal triangle
𝑧𝑙 , 𝑧𝑢 ∈ 𝑍𝑎,𝑏 Lower and upper bound of the modal interval

𝑧𝑚1 , 𝑧𝑚2 , 𝑧𝑚3 ∈ 𝑍𝑎,𝑏 x-coordinates of the modal triangle in the ECDF
𝑚1,𝑚2,𝑚3 ∈ N Indices of 𝑧𝑚1 , 𝑧𝑚2 , 𝑧𝑚3

𝑧𝑚1 , 𝑧𝑚2 , 𝑧𝑚3 ∈ 𝑍𝑎,𝑏 Non-projected representations of 𝑧𝑚1 , 𝑧𝑚2 , 𝑧𝑚3
⇒ 𝑧𝑚 𝑗

= 𝑝𝑇
𝑎,𝑏

· 𝑧𝑚 𝑗

B INFLUENCE OF THE BATCH SIZE
We would like to demonstrate by an experiment why an increasing
batch size is necessary for the DipEncoder when the number of
clusters increases. For this purpose, we execute the DipEncoder
with batch sizes between 5 · 𝑘 and 50 · 𝑘 on different data sets. One
should keep in mind that the number of clusters in the data sets
ranges from 4 (Reuters10k) to 26 (Letters). The results can be seen
in Figure 7.

Here we can observe that most records reach a plateau at around
15 · 𝑘 . Above 25 · 𝑘 , almost no improvements take place, which is
why we select this factor as the default value.

C ARI RESULTS
In addition to the NMI results as shown in Table 1, we evaluate the
experiments using the adjusted rand index (ARI). Those values are
shown in Table 5.

D DERIVATIONS
To consolidate the understanding of our methods, we would like to
present some derivations. First, we will deal with the calculation
of the Dip-value before we take a closer look at the gradients with

Figure 7: Results of the DipEncoder using different batch
sizes on multiple data sets. Each entry corresponds to the
average of 10 executions. The black vertical line illustrates
the selected default value for the DipEncoder.

respect to the projection axis and the modal triangle. All symbols
are defined as described above.

D.1 Derivation of the Dip-value
It has already been described in Section 3 that the Dip-value is
determined based on the height of the modal triangle Δ on the
ECDF. Following holds:

height(Δ) = 2 · dip(𝑍)

To solve this equation we determine the intersection between the
vertical line towards (𝑧𝑚2 ,

𝑚2
𝑁
) and the line between (𝑧𝑚1 ,

𝑚1
𝑁
)

and (𝑧𝑚3 ,
𝑚3
𝑁

). Note that the intersection can be above or below
(𝑧𝑚2 ,

𝑚2
𝑁
). (

𝑧𝑚2
𝑚2
𝑁

)
± 𝛼

(
0
1

)
=

(
𝑧𝑚1
𝑚1
𝑁

)
+ 𝛽

(
𝑧𝑚3 − 𝑧𝑚1
𝑚3−𝑚1

𝑁

)
,

where 𝛼 = height(Δ).

⇒ 𝛽 =
𝑧𝑚2 − 𝑧𝑚1

𝑧𝑚3 − 𝑧𝑚1

⇒ 𝛼 = ± 1
𝑁
(𝑚1 −𝑚2 +

(𝑚3 −𝑚1) (𝑧𝑚2 − 𝑧𝑚1)
𝑧𝑚3 − 𝑧𝑚1

)

This yields:

dip’(𝑍) = 1
2𝑁

���� (𝑚3 −𝑚1) (𝑧𝑚2 − 𝑧𝑚1)
𝑧𝑚3 − 𝑧𝑚1

+𝑚1 −𝑚2

����
Krause et al. [22] add another 1

2𝑁 to this formula. This value was
also used in the implementation outline from [15]. We assume a
regularization purpose in the case of a degenerate triangle resulting
in a Dip-value of 0, which is out of the bounds for the Dip-value.
Note that this additional value has only a small influence on the
final Dip-value and, as a constant, no impact on the gradients.

dip(𝑍) = 1
2𝑁

(����
C𝐴︷ ︸︸ ︷

(𝑚3 −𝑚1) (𝑧𝑚2 − 𝑧𝑚1)
𝑧𝑚3 − 𝑧𝑚1

+𝑚1 −𝑚2

���� + 1
)

855

The DipEncoder: Enforcing Multimodality in Autoencoders KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 5: ARI results of the DipEncoder against the comparison algorithms on various data sets. Each experiment is repeated ten
times. Representation corresponds to Table 1 (showing the NMI results).

Method Optdigits (𝑘 = 10) USPS (𝑘 = 10) HAR (𝑘 = 6) Pendigits (𝑘 = 10) Reuters10k (𝑘 = 4)
(𝑁 = 5620, 𝑑 = 64) (𝑁 = 9298, 𝑑 = 256) (𝑁 = 10299, 𝑑 = 561) (𝑁 = 10992, 𝑑 = 16) (𝑁 = 10000, 𝑑 = 2000)

DipEncoder 85.6 ± 5.8 (91.4) 74.2 ± 1.1 (76.2) 63.4 ± 7.4 (73.5) 64.7. ± 4.2 (70.2) 35.4 ± 4.5 (43.4)
AE+k-means 76.7 ± 4.5 (83.0) 59.7 ± 1.4 (61.6) 58.7 ± 5.4 (65.1) 60.5 ± 1.9 (63.9) 39.9 ± 10.7 (56.7.)
DEC 84.9. ± 5.2 (91.1.) 72.7. ± 0.9 (74.1.) 53.4 ± 7.7 (71.8) 66.7 ± 2.6 (68.6.) 35.3 ± 10.6 (57.6)
IDEC 77.1 ± 4.6 (83.1) 59.3 ± 1.3 (60.9) 58.1 ± 2.8 (62.5) 60.2 ± 2.9 (63.9) 36.4. ± 10.1 (56.4)
DCN 81.1 ± 5.0 (86.2) 64.4 ± 2.3 (67.0) 62.7. ± 5.8 (71.9.) 62.6 ± 2.0 (64.7) 29.6 ± 10.1 (49.8)
DipDECK 79.6 ± 5.5 (85.7) 58.7 ± 2.8 (63.1) 49.9 ± 1.1 (50.9) 61.7 ± 2.6 (65.4) 12.1 ± 14.3 (36.9)

Method 20Newsgroups (𝑘 = 20) Letters (𝑘 = 26) MNIST (𝑘 = 10) F-MNIST (𝑘 = 10) K-MNIST (𝑘 = 10)
(𝑁 = 18846, 𝑑 = 2000) (𝑁 = 20000, 𝑑 = 16) (𝑁 = 70000, 𝑑 = 784) (𝑁 = 70000, 𝑑 = 784) (𝑁 = 70000, 𝑑 = 784)

DipEncoder 18.0 ± 0.9 (19.2) 22.8 ± 0.9 (24.0) 81.0. ± 3.0 (84.5) 44.8 ± 2.8 (47.4.) 37.7. ± 3.7 (43.9)
AE+k-means 16.9. ± 0.7 (17.9.) 18.8 ± 0.6 (19.9) 69.1 ± 2.3 (73.2) 38.3 ± 1.1 (39.9) 32.4 ± 3.1 (37.9)
DEC 5.4 ± 0.6 (6.1) 20.5 ± 2.3 (23.4) 81.6 ± 2.1 (83.5.) 44.0. ± 2.8 (48.9) 39.0 ± 2.3 (42.3.)
IDEC 12.8 ± 1.1 (14.8) 21.3. ± 1.5 (23.6) 70.3 ± 2.0 (74.2) 38.1 ± 1.1 (39.9) 32.5 ± 2.2 (36.5)
DCN 15.1 ± 1.1 (17.4) 18.9 ± 2.5 (23.9.) 77.1 ± 3.5 (80.8) 38.5 ± 1.2 (41.3) 31.5 ± 2.9 (37.5)
DipDECK 00.0 ± 0.0 (00.0) 7.2 ± 1.8 (9.1) 70.7 ± 2.5 (74.4) 32.8 ± 3.3 (37.6) 22.1 ± 4.0 (29.0)

D.2 Derivation of the gradients
Let us assume that𝐴 > 0 and consolidate factors that are irrelevant
for the calculation of the gradients (if 𝐴 < 0, all gradients must be
multiplied by −1.). Following holds:

dip(𝑍) = (𝑚3 −𝑚1)
2𝑁

(
𝑧𝑚2

𝑧𝑚3 − 𝑧𝑚1

−
𝑧𝑚1

𝑧𝑚3 − 𝑧𝑚1

)
+ const

=
(𝑚3 −𝑚1)

2𝑁

(
𝑝𝑇 𝑧𝑚2

𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1

−
𝑝𝑇 𝑧𝑚1

𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1

)
+ const

D.2.1 Gradient regarding the projection axis.

𝜕

𝜕𝑝 [𝑖] dip(𝑍) =
(𝑚3 −𝑚1)

2𝑁((𝑧𝑚2 [𝑖]
𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1

−
𝑝𝑇 𝑧𝑚2 (𝑧𝑚3 [𝑖] − 𝑧𝑚1 [𝑖])

(𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1)2
)
−(𝑧𝑚1 [𝑖]

𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1

−
𝑝𝑇 𝑧𝑚1 (𝑧𝑚3 [𝑖] − 𝑧𝑚1 [𝑖])

(𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1)2
))

=
(𝑚3 −𝑚1)

2𝑁

(
𝑧𝑚2 [𝑖] − 𝑧𝑚1 [𝑖]
𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1

+

(𝑝𝑇 𝑧𝑚1 − 𝑝𝑇 𝑧𝑚2) (𝑧𝑚3 [𝑖] − 𝑧𝑚1 [𝑖])
(𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1)2

)
=

(𝑚3 −𝑚1)
2𝑁

(
𝑧𝑚2 [𝑖] − 𝑧𝑚1 [𝑖]

𝑧𝑚3 − 𝑧𝑚1

+
(𝑧𝑚1 − 𝑧𝑚2) (𝑧𝑚3 [𝑖] − 𝑧𝑚1 [𝑖])

(𝑧𝑚3 − 𝑧𝑚1)2

)
D.2.2 Gradient regarding the modal triangle.
Considering 𝑧𝑚1 :

𝜕

𝜕𝑧𝑚1 [𝑖]
dip(𝑍) = (𝑚3 −𝑚1)

2𝑁

((−𝑝𝑇 𝑧𝑚2) (−𝑝 [𝑖])
(𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1)2

−(𝑝 [𝑖]
𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1

+
(−𝑝𝑇 𝑧𝑚1) (−𝑝 [𝑖])
(𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1)2

))

=𝑝 [𝑖] (𝑚3 −𝑚1)
2𝑁

(
𝑝𝑇 𝑧𝑚2 − 𝑝𝑇 𝑧𝑚1

(𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1)2
− 1
𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1

)
=𝑝 [𝑖] (𝑚3 −𝑚1)

2𝑁

(
𝑝𝑇 𝑧𝑚2 − 𝑝𝑇 𝑧𝑚1 − 𝑝𝑇 𝑧𝑚3 + 𝑝𝑇 𝑧𝑚1

(𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1)2

)
=𝑝 [𝑖] (𝑚3 −𝑚1)

2𝑁

(
𝑧𝑚2 − 𝑧𝑚3

(𝑧𝑚3 − 𝑧𝑚1)2

)
Considering 𝑧𝑚2 :

𝜕

𝜕𝑧𝑚2 [𝑖]
dip(𝑍) = (𝑚3 −𝑚1)

2𝑁

(
𝑝 [𝑖]

𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1

)
=𝑝 [𝑖] (𝑚3 −𝑚1)

2𝑁

(
1

𝑧𝑚3 − 𝑧𝑚1

)
Considering 𝑧𝑚3 :

𝜕

𝜕𝑧𝑚3 [𝑖]
dip(𝑍) = (𝑚3 −𝑚1)

2𝑁

((−𝑝𝑇 𝑧𝑚2)𝑝 [𝑖]
(𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1)2

−
(−𝑝𝑇 𝑧𝑚1)𝑝 [𝑖]

(𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1)2

)
=𝑝 [𝑖] (𝑚3 −𝑚1)

2𝑁

(
𝑝𝑇 𝑧𝑚1 − 𝑝𝑇 𝑧𝑚2

(𝑝𝑇 𝑧𝑚3 − 𝑝𝑇 𝑧𝑚1)2

)
=𝑝 [𝑖] (𝑚3 −𝑚1)

2𝑁

(
𝑧𝑚1 − 𝑧𝑚2

(𝑧𝑚3 − 𝑧𝑚1)2

)
In summary:

𝜕

𝜕𝑧 [𝑖] dip(𝑍) =

𝑝 [𝑖] (𝑚3−𝑚1)
2𝑁

𝑧𝑚2−𝑧𝑚3
(𝑧𝑚3−𝑧𝑚1)2

if 𝑧 = 𝑧𝑚1 ,

𝑝 [𝑖] (𝑚3−𝑚1)
2𝑁

1
𝑧𝑚3−𝑧𝑚1

if 𝑧 = 𝑧𝑚2 ,

𝑝 [𝑖] (𝑚3−𝑚1)
2𝑁

𝑧𝑚1−𝑧𝑚2
(𝑧𝑚3−𝑧𝑚1)2

if 𝑧 = 𝑧𝑚3 ,

0 else

856

	Abstract
	1 Introduction
	2 Related Work
	3 The DipEncoder
	3.1 Update the cluster labels
	3.2 Clustering algorithm

	4 Experiments
	5 Conclusion
	References
	A Symbols
	B Influence of the batch size
	C ARI results
	D Derivations
	D.1 Derivation of the Dip-value
	D.2 Derivation of the gradients

